ROCK IMAGER

®

Resources

Publications

2016

Structural basis of potent Zika-dengue virus antibody cross-neutralization.
Barba-Spaeth G, Dejnirattisai W, Rouvinski A, Vaney MC, Medits I, Sharma A, Simon-Lorière E, Sakuntabhai A, Cao-Lormeau VM, Haouz A, England P, Stiasny K, Mongkolsapaya J, Heinz FX, Screaton GR, Rey FA. 
Nature. 2016 Aug 4;536(7614):48-53.

2015

Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine
Qin L, Kufareva I, Holden LG, Wang C, Zheng Y, Zhao C, Fenalti G, Wu H, Han GW, Cherezov V, Abagyan R, Stevens RC, Handel TM.
Science. 2015 Mar 6;347(6226):1117-22. doi: 10.1126/science.1261064. Epub 2015 Jan 22. 
PMID: 25612609 [PubMed - in process]

2014

Axial helix rotation as a mechanism for signal regulation inferred from the crystallographic analysis of the E. coli serine chemoreceptor.
Ferris HU, Zeth K, Hulko M, Dunin-Horkawicz S, Lupas AN.
J Struct Biol. 2014 Jun;186(3):349-56. doi: 10.1016/j.jsb.2014.03.015. Epub 2014 Mar 27. 
PMID: 24680785 [PubMed – in process]
 
Crystal structure and molecular imaging of the Nav channel β3 subunit indicates a trimeric assembly.
Namadurai S, Balasuriya D, Rajappa R, Wiemhöfer M, Stott K, Klingauf J, Edwardson JM, Chirgadze DY, Jackson AP.
J Biol Chem. 2014 Apr 11;289(15):10797-811. doi: 10.1074/jbc.M113.527994. Epub 2014 Feb 24.
PMID: 24567321 [PubMed - in process]
 
Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography.
Weierstall U, James D, Wang C, White TA, Wang D, Liu W, Spence JC, Bruce Doak R, Nelson G, Fromme P, Fromme R, Grotjohann I, Kupitz C, Zatsepin NA, Liu H, Basu S, Wacker D, Han GW, Katritch V, Boutet S, Messerschmidt M, Williams GJ, Koglin JE, Marvin Seibert M, Klinker M, Gati C, Shoeman RL, Barty A, Chapman HN, Kirian RA, Beyerlein KR, Stevens RC, Li D, Shah ST, Howe N, Caffrey M, Cherezov V.
Nat Commun. 2014;5:3309. doi: 10.1038/ncomms4309..
PMID: 24525480 [PubMed - in process]
 
Structural basis for HIV-1 neutralization by 2F5-like antibodies m66 and m66.6.
Ofek G, Zirkle B, Yang Y, Zhu Z, McKee K, Zhang B, Chuang GY, Georgiev IS, O'Dell S, Doria-Rose N, Mascola JR, Dimitrov DS, Kwong PD.
J Virol. 2014 Mar;88(5):2426-41. doi: 10.1128/JVI.02837-13. Epub 2013 Dec 11.
PMID: 24335316 [PubMed - indexed for MEDLINE]
 
The multidrug resistance IncA/C transferable plasmid encodes a novel domain-swapped dimeric protein-disulfide isomerase.
Premkumar L, Kurth F, Neyer S, Schembri MA, Martin JL.
J Biol Chem. 2014 Jan 31;289(5):2563-76. doi: 10.1074/jbc.M113.516898. Epub 2013 Dec 5.
PMID: 24311786 [PubMed - indexed for MEDLINE]

2013

Characterization of salt interferences in second-harmonic generation detection of protein crystals.
Closser RG, Gualtieri EJ, Newman JA, Simpson GJ.
J Appl Crystallogr. 2013 Dec 1;46(Pt 6):1903-1906. Epub 2013 Nov 15.
PMID: 24282335 [PubMed]
 
Purification, crystallization and preliminary crystallographic analysis of KatB, a manganese catalase from Anabaena PCC 7120.
Bihani SC, Chakravarty D, Ballal A.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Nov;69(Pt 11):1299-302. doi: 10.1107/S1744309113028017. Epub 2013 Oct 30.
PMID: 24192374 [PubMed - in process]
 
Crystallization and preliminary X-ray diffraction analysis of the flax cytokinin oxidase LuCKX1.1.
Wan L, Williams SJ, Zhang X, Ericsson DJ, Koeck M, Dodds PN, Ellis JG, Kobe B.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Oct;69(Pt 10):1094-6. doi: 10.1107/S1744309113023142. Epub 2013 Sep 28.
PMID: 24100555 [PubMed - indexed for MEDLINE]
 
Crystallization studies of the keratin-like domain from Arabidopsis thaliana SEPALLATA 3.
Acajjaoui S, Zubieta C.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 Sep;69(Pt 9):997-1000. doi: 10.1107/S174430911302006X. Epub 2013 Aug 19. 
PMID: 23989147 [PubMed - indexed for MEDLINE]
 
 
A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals.
Nederlof I, van Genderen E, Li YW, Abrahams JP.
Acta Crystallogr D Biol Crystallogr. 2013 Jul;69(Pt 7):1223-30. doi: 10.1107/S0907444913009700. Epub 2013 Jun 15.
PMID: 23793148 [PubMed - indexed for MEDLINE]
 
Imaging protein three-dimensional nanocrystals with cryo-EM.
Nederlof I, Li YW, van Heel M, Abrahams JP.
Acta Crystallogr D Biol Crystallogr. 2013 May;69(Pt 5):852-9. doi: 10.1107/S0907444913002734. Epub 2013 Apr 19.
PMID: 23633595 [PubMed - indexed for MEDLINE]
 
Structural insights into oligomerization and mitochondrial remodelling of dynamin 1-like protein.
Fröhlich C, Grabiger S, Schwefel D, Faelber K, Rosenbaum E, Mears J, Rocks O, Daumke O.
EMBO J. 2013 May 2;32(9):1280-92. doi: 10.1038/emboj.2013.74. Epub 2013 Apr 12.
PMID: 23584531 [PubMed - indexed for MEDLINE]
 
Insights into the oligomerization of CRMPs: crystal structure of human collapsin response mediator protein 5.
Ponnusamy R, Lohkamp B.
J Neurochem. 2013 Jun;125(6):855-68. doi: 10.1111/jnc.12188. Epub 2013 Mar 5.
PMID: 23373749 [PubMed - indexed for MEDLINE]

2012

Large-Scale Production of Microcrystals and Precipitates of Proteins and Their Complexes.
Chan-Huot et al.
Cryst. Growth Des. 2012 12(12):6199-6207. doi: 10.1021/ch301378j. Epub 2012 Nov 5.
 
A fast, simple and robust protocol for growing crystals in the lipidic cubic phase.
Aherne M, Lyons JA, Caffrey M.
J Appl Crystallogr. 2012 Dec 1;45(Pt 6):1330-1333. Epub 2012 Oct 10.
PMID: 23162163 [PubMed]
 
xtalPiMS: A tool for managing your crystallization experiments.
Daniel E, Wirenga R, Diprose J, Berry I, Esnouf R, Stuart D, Seroul G, Marquez J, deVries D, Perrakis A, Launer L, Walsh M, Griffiths S, Wilson K, Pajon A, Lin B, Morris C.
JActa Cryst A. 2012 Aug; A68, S120.
 
Crystallization of SHARPIN using an automated two-dimensional grid screen for optimization.
Stieglitz B, Rittinger K, Haire LF.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Jul 1;68(Pt 7):816-9. doi: 10.1107/S1744309112022208. Epub 2012 Jun 28.
PMID: 22750873 [PubMed - indexed for MEDLINE]

2011

Crystallizing Membrane Proteins in Lipidic Mesophases. A Host Lipid Screen.
Li D, Lee J, Caffrey M.
Cryst Growth Des. 2011;11(2):530-537.
PMID: 21743796 [PubMed]
 
A Straightforward and Robust Method for Introducing Human Hair as a Nucleant into High Throughput Crystallization Trials
Nederlof I, Hosseini R, Georgieva D, Luo J, D Li, J Abrahams.
Cryst. Growth Des. 2011, 11 (4), 1170-1176.
 
The structure of LsrB from Yersinia pestis complexed with autoinducer-2.
Kavanaugh JS, Gakhar L, Horswill AR.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Dec 1;67(Pt 12):1501-5. doi: 10.1107/S1744309111042953. Epub 2011 Nov 29.
PMID: 22139152 [PubMed - indexed for MEDLINE]
 
Crystallization and X-ray diffraction analysis of the C-terminal domain of the flax rust effector protein AvrM.
Ve T, Williams SJ, Stamp A, Valkov E, Dodds PN, Anderson PA, Kobe B.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Dec 1;67(Pt 12):1603-7. doi: 10.1107/S1744309111037675. Epub 2011 Nov 26.
PMID: 22139177 [PubMed - indexed for MEDLINE]
 
Screening of protein crystallization trials by second order nonlinear optical imaging of chiral crystals (SONICC).
Haupert LM, Simpson GJ.
Methods. 2011 Dec;55(4):379-86. doi: 10.1016/j.ymeth.2011.11.003. Epub 2011 Nov 17. Review.
PMID: 22101350 [PubMed - indexed for MEDLINE]
 
Characterization of lipid matrices for membrane protein crystallization by high-throughput small angle X-ray scattering.
Joseph JS, Liu W, Kunken J, Weiss TM, Tsuruta H, Cherezov V.
Methods. 2011 Dec;55(4):342-9. doi: 10.1016/j.ymeth.2011.08.013. Epub 2011 Aug 27.
PMID: 21903166 [PubMed - indexed for MEDLINE]
 
Structure and mechanism of iron translocation by a Dps protein from Microbacterium arborescens.
Pesek J, Büchler R, Albrecht R, Boland W, Zeth K.
J Biol Chem. 2011 Oct 7;286(40):34872-82. doi: 10.1074/jbc.M111.246108. Epub 2011 Jul 16.
PMID: 21768097 [PubMed - indexed for MEDLINE]
 
Structural analysis of histo-blood group antigen binding specificity in a norovirus GII.4 epidemic variant: implications for epochal evolution.
Shanker S, Choi JM, Sankaran B, Atmar RL, Estes MK, Prasad BV.
J Virol. 2011 Sep;85(17):8635-45. doi: 10.1128/JVI.00848-11. Epub 2011 Jun 29.
PMID: 21715503 [PubMed - indexed for MEDLINE]
 
xtalPiMS: a PiMS-based web application for the management and monitoring of crystallization trials.
Daniel E, Lin B, Diprose JM, Griffiths SL, Morris C, Berry IM, Owens RJ, Blake R, Wilson KS, Stuart DI, Esnouf RM.
CJ Struct Biol. 2011 Aug;175(2):230-5. doi: 10.1016/j.jsb.2011.05.008. Epub 2011 May 14.
PMID: 21605683 [PubMed - indexed for MEDLINE]
 
Expression, purification and crystallization of the Cmi immunity protein from Escherichia coli.
Römer C, Patzer SI, Albrecht R, Zeth K, Braun V.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Apr 1;67(Pt 4):517-20. doi: 10.1107/S1744309111006737. Epub 2011 Mar 30.
PMID: 21505256 [PubMed - indexed for MEDLINE]
 
SLS Crystallization Platform at Beamline X06DA-A Fully Automated Pipeline Enabling in Situ X-ray Diffraction Screening.
Bingel-Erlenmeyer R, Olieric V, Grimshaw J, Gabadinho J, Wang X, Ebner S, Isenegger A, Schnieder R, Schneider J, Glettig W, Pradervand C, Panepucci E, Tomizaki T, Wang M, Schulze-Briese C.
Cryst. Growth Des. 2011, 11 (4), 916-923. doi: 10.1021/cg101375j. Epub 2011 March 17.
 
Membrane Protein Crystallization in Lipidic Mesophases. Hosting lipid affects on the crystallization and structure of a transmembrane peptide.
Höfer N, Aragão D, Lyons JA, Caffrey M.
Cryst Growth Des. 2011 Apr 6;11(4):1182-1192. Epub 2011 Feb 16.
PMID: 22933857 [PubMed]
 
Crystallization, X-ray diffraction analysis and preliminary structure determination of the TIR domain from the flax resistance protein L6.
Ve T, Williams S, Valkov E, Ellis JG, Dodds PN, Kobe B.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Feb 1;67(Pt 2):237-40. doi: 10.1107/S1744309110051006. Epub 2011 Jan 22.
PMID: 21301095 [PubMed - indexed for MEDLINE]
 
Activation of colicin M by the FkpA prolyl cis-trans isomerase/chaperone.
Helbig S, Patzer SI, Schiene-Fischer C, Zeth K, Braun V.
J Biol Chem. 2011 Feb 25;286(8):6280-90. doi: 10.1074/jbc.M110.165274. Epub 2010 Dec 13.
PMID: 21149455 [PubMed - indexed for MEDLINE]

2010

Crystallization and preliminary X-ray data collection of the Escherichia coli lipoproteins BamC, BamD and BamE.
Albrecht R, Zeth K.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Dec 1;66(Pt 12):1586-90. doi: 10.1107/S1744309110034160. Epub 2010 Nov 25.
PMID: 21139201 [PubMed - indexed for MEDLINE]
 
Crystallization and preliminary X-ray analysis of mycophenolic acid-resistant and mycophenolic acid-sensitive forms of IMP dehydrogenase from the human fungal pathogen Cryptococcus.
Morrow CA, Stamp A, Valkov E, Kobe B, Fraser JA.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Sep 1;66(Pt 9):1104-7. doi: 10.1107/S1744309110031659. Epub 2010 Aug 28.
PMID: 20823538 [PubMed - indexed for MEDLINE]
 
Expression and crystallization of SeDsbA, SeDsbL and SeSrgA from Salmonella enterica serovar Typhimurium.
Jarrott R, Shouldice SR, Guncar G, Totsika M, Schembri MA, Heras B.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 May 1;66(Pt 5):601-4. doi: 10.1107/S1744309110011942. Epub 2010 Apr 30.
PMID: 20445269 [PubMed - indexed for MEDLINE]
 
Characterization of the DsbA oxidative folding catalyst from Pseudomonas aeruginosa reveals a highly oxidizing protein that binds small molecules.
Shouldice SR, Heras B, Jarrott R, Sharma P, Scanlon MJ, Martin JL.
Antioxid Redox Signal. 2010 Apr 15;12(8):921-31. doi: 10.1089/ars.2009.2736.
PMID: 19788398 [PubMed - indexed for MEDLINE]
 
Evaluating the efficacy of tryptophan fluorescence and absorbance as a selection tool for identifying protein crystals.
Gill HS.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Mar 1;66(Pt 3):364-72. doi: 10.1107/S1744309110002022. Epub 2010 Feb 27.
PMID: 20208182 [PubMed - indexed for MEDLINE]
 
Nonlinear optical imaging of integral membrane protein crystals in lipidic mesophases.
Kissick DJ, Gualtieri EJ, Simpson GJ, Cherezov V.
Anal Chem. 2010 Jan 15;82(2):491-7. doi: 10.1021/ac902139w.
PMID: 20025250 [PubMed - indexed for MEDLINE]

2009

Interaction between plate make and protein in protein crystallisation screening.
King GJ, Chen KE, Robin G, Forwood JK, Heras B, Thakur AS, Kobe B, Blomberg SP, Martin JL.
PLoS One. 2009 Nov 16;4(11):e7851. doi: 10.1371/journal.pone.0007851.
PMID: 19924245 [PubMed - indexed for MEDLINE]
 
Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 microm size X-ray synchrotron beam.
Cherezov V, Hanson MA, Griffith MT, Hilgart MC, Sanishvili R, Nagarajan V, Stepanov S, Fischetti RF, Kuhn P, Stevens RC.
J R Soc Interface. 2009 Oct 6;6 Suppl 5:S587-97. doi: 10.1098/rsif.2009.0142.focus. Epub 2009 Jun 17. Review.
PMID: 19535414 [PubMed - indexed for MEDLINE]
 
Expression, purification and preliminary X-ray diffraction studies of VERNALIZATION1(208-341) from Arabidopsis thaliana.
King G, Hill JM, Martin JL, Mylne JS.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Mar 1;65(Pt 3):291-4. doi: 10.1107/S1744309109004217. Epub 2009 Feb 26.
PMID: 19255487 [PubMed - indexed for MEDLINE]

2008

The use of systematic N- and C-terminal deletions to promote production and structural studies of recombinant proteins.
Gräslund S, Sagemark J, Berglund H, Dahlgren LG, Flores A, Hammarström M, Johansson I, Kotenyova T, Nilsson M, Nordlund P, Weigelt J.
Protein Expr Purif. 2008 Apr;58(2):210-21. doi: 10.1016/j.pep.2007.11.008. Epub 2007 Nov 22.
PMID: 18171622 [PubMed - indexed for MEDLINE]
 
In situ X-ray analysis of protein crystals in low-birefringent and X-ray transmissive plastic microchannels.
Ng JD, Clark PJ, Stevens RC, Kuhn P.
Acta Crystallogr D Biol Crystallogr. 2008 Feb;64(Pt 2):189-97. doi: 10.1107/S0907444907060064. Epub 2008 Jan 16.
PMID: 18219119 [PubMed - indexed for MEDLINE]
 
A new expression system for protein crystallization using trimeric coiled-coil adaptors.
Hernandez Alvarez B, Hartmann MD, Albrecht R, Lupas AN, Zeth K, Linke D.
Protein Eng Des Sel. 2008 Jan;21(1):11-8. Epub 2007 Dec 18.
PMID: 18093992 [PubMed - indexed for MEDLINE]

2007

Structure-based optimization of PKCtheta inhibitors.
Mosyak L, Xu Z, Joseph-McCarthy D, Brooijmans N, Somers W, Chaudhary D.
Biochem Soc Trans. 2007 Nov;35(Pt 5):1027-31. Review.
PMID: 17956269 [PubMed - indexed for MEDLINE]

2006

Structure of the orthorhombic form of human inosine triphosphate pyrophosphatase.
MPorta J, Kolar C, Kozmin SG, Pavlov YI, Borgstahl GE.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Nov 1;62(Pt 11):1076-81. Epub 2006 Oct 25.
PMID: 17077483 [PubMed - indexed for MEDLINE]
Computer Requirements

The standard ROCK IMAGER controlling computer offered with the instrument supports imaging with continuous multiple focus level imaging (z-slicing) and processing of all images.

ROCK IMAGER software operates with 64-bit Windows 7 or Windows XP.

Electrical Specifications

ROCK IMAGER 1 or 2

  • RI 1: 100-240 V, 50-60 Hz, 480 W max, 1 PH
  • Computer: 575 W max, 1 PH
  • Total Watt Requirement: 1055 W

 

ROCK IMAGER 54 or 182

  • Robotics: 100-240V, 50-60Hz, 480W max, 1 PH
  • Computer: 575W max, 1phase
  • UPS requirement: APC-SU1500 or equivalent

 

ROCK IMAGER 1000 - Peltier Cooled

  • Temperature Regulation: 100-240 V, 50-60 Hz, 750 W max, 1 PH
  • Robotics: 100-240 V, 50-60 Hz, 240 W max, 1 PH
  • Computer: 525 W max, 1 PH
  • Recommended UPS: 1500 W UPS

 

ROCK IMAGER 1000 - Compressor Cooled

  • Temperature Regulation : 100-240 V, 50-60 Hz, 400 W max, 1 PH
  • Robotics: 100-240 V, 50-60 Hz, 240 W max, 1 PH
  • Computer: 525 W max, 1 PH
  • Compressor Unit: 208-230 V, 50-60 Hz, 2000 W max,1 PH, 2 outlets
  • Recommended Emergency for Cooling: Peltier Cooled (1500 W), Compressor Cooled (5000 W)

 

ROCK IMAGER 1000 - Dual Imager

  • Temperature Regulation: 100-240 V, 50-60 Hz, 750 W max, 1 PH
  • Robotics: 100-240 V, 50-60 Hz, 270 W max, 1 PH
  • Computer: 525 W max, 1 PH
  • UPS (uninterrupted power supply) Requirement:
    RI1000 w/ FRAP: 3510 W
    RI1000 w/ SONCC: 4700 W
Physical Dimensions - ROCK IMAGER 1

Depth: 354 mm (14")

Width: 419 mm 17")

Height: 621 mm (25")

Weight: 41 kg (91 lb)

Physical Dimensions - ROCK IMAGER 2

Depth: 371 mm (15")

Width: 420 mm (17")

Height: 586 mm (24")

Weight: 23 kg (51 lbs)

Physical Dimensions - ROCK IMAGER 54

Depth: 614 mm (26")

Width: 750 mm (30")

Height: 1027 mm (41")

Weight: 114 kg (252 lbs)

Physical Dimensions - ROCK IMAGER 182

Depth: 798 mm (31")

Width: 865 mm (35")

Height: 1028 mm (41")

Weight: 161 kg (355 lbs)

Physical Dimensions - ROCK IMAGER 1000

ROCK IMAGER 1000 - Peltier Cooled

Depth: 1145 mm (46")

Width: 932 mm (37")

Height: 2211 mm (88")

Weight: 387 kg (854 lbs)

 

ROCK IMAGER 1000 - Compressor Cooled

Depth: 1147 mm (46")

Width: 1442 mm (57")

Height: 2102 mm (83")

Weight: 399 kg (880 lb)

 

ROCK IMAGER 1000 - Dual Imager

Depth: 1085 mm (43")

Width: 834 mm (33")

Height: 2197 mm (87")

Weight: 462 kg (1019 lb)

UV Compatibility

Not all crystallography consumables are compatible with ultraviolet light. Cover media can either block the excitation light (absorb UV radiation in the 250-320nm band) or it can fluoresce in the same band that tryptophan does, creating a high level of background noise (this is a process commonly called autofluorescence). Crystallization plates can also autofluoresce, increasing unwanted noise. The challenge of absorption is not a problem in crystallization plates for we have positioned the UV light source and camera of our imagers above the plates.

 

[The term ´autofluorescence´ is a bit of a misnomer. Typically, you've done something to make your target fluoresce, and this noise-contributing fluorescence happens automatically, hence autofluorescence. Here, we're using the intrinsic fluorescence of tryptophan, which is the exception rather than the rule in fluorescence microscopy. Our desired signal is, in a sense, already autofluorescence. In this document though, we use the term autofluorescence to refer to undesired noise from the cover media or plate.]

 

To recap, there are three consumable-related problems that could reduce the signal-to-noise ratio while imaging using UV light (listed in the order of what seems most common/serious):

    • Crystallization plate could autofluoresce, increasing noise (common in polystyrene plates).
    • Cover media could absorb some/all of the UV excitation light, reducing the signal strength.

 

[Note: This can be partially recovered with longer exposure times]

  • Cover media could autofluoresce, increasing noise (common in glass cover slides).

 

Notes:

  • Plates and cover media that offer "low birefringence" seem to also have low autofluorescence. This is the best rule of thumb we´ve found so far.
  • At least twice, media manufacturers have changed formulations for some nonrelated reason (hydrophilicity, optical properties, etc.) and inadvertently decreased UV performance. The two cases we´ve noted were for TTP LabTech´s ViewDrop sheets and Hampton Research´s glass cover slides. We have notified both manufacturers, and they are interested in addressing their respective problems.
Hanging Drop Cover Seals

Formulations for given plastics/glasses may change with time which may affect UV performance. Unfortunately, because of this, we cannot 100% guarantee that the consumables that we have tested will have the exact UV properties every time you use them. These results are from FORMULATRIX-derived, in-house testing and should be used only as suggestions into what consumables to use for UV imaging.

 

UV Performance Rating Scale:

  • GREAT: high signal transmission and low autofluorescence. Great for long-term use.
  • GOOD: lacking in either signal strength or low autofluorescence. Investigate before committing to long-term use.
  • OK: even more lacking in either signal strength or low autofluorescence, but still useful. Would most likely require improvement for long-term use.
  • BAD: flawed, but useable for investigation/demonstrations. Not acceptable for long-term use.
  • UNUSABLE: critically flawed, do not use.
  • UNRELIABLE: UV performance varies due to changes in manufacturing.
Hanging Drop Cover SealPart #PerformanceTransmissionNotes
Art Robbins Hanging Drop Seal600-4006-00GREAT72%None
Excel Scientific CrystalSeal HDZAF-PE-50GREAT67%None
QIAGEN 96-well Hanging Drop SealOK61%Autofluorescent
SWISSCI UVP Hanging Drop SealHDP-UVP-96T01GREAT84%None
TTP LabTech ViewDrop Sheets4150-05100BAD18%None
TTP LabTech ViewDrop II Sheets4150-05600UNUSABLENone
Sitting Drop Cover Seals

Formulations for given plastics/glasses may change with time which may affect UV performance. Unfortunately, because of this, we cannot 100% guarantee that the consumables that we have tested will have the exact UV properties every time you use them. These results are from FORMULATRIX-derived, in-house testing and should be used only as suggestions into what consumables to use for UV imaging.

 

UV Performance Rating Scale:

  • GREAT: high signal transmission and low autofluorescence. Great for long-term use.
  • GOOD: lacking in either signal strength or low autofluorescence. Investigate before committing to long-term use.
  • OK: even more lacking in either signal strength or low autofluorescence, but still useful. Would most likely require improvement for long-term use.
  • BAD: flawed, but useable for investigation/demonstrations. Not acceptable for long-term use.
  • UNUSABLE: critically flawed, do not use.
  • UNRELIABLE: UV performance varies due to changes in manufacturing.
Sitting Drop Cover SealPart #PerformanceTransmissionNotes
Axygen PlateMaxUC-500GREATNone
Excel Scientific Classic ThermalSeal Sealing Films100-THER-PLTGOOD73%None
Excel Scientific ThermalSeal RT2 Sealing FilmsTS-RT2-100 UNUSABLE1%None
Excel Scientific ThermalSeal RTS Sealing FilmsTSS-RTQ-100GREAT93%None
Greiner Viewseal676070GREAT83%None
Hampton Clear Seal SheetsHR4-521GREAT90%Lot #: MR61733/7054
Hampton Crystal Clear SheetsHR3-609UNUSABLE 0%None
Cover Slides

Formulations for given plastics/glasses may change with time which may affect UV performance. Unfortunately, because of this, we cannot 100% guarantee that the consumables that we have tested will have the exact UV properties every time you use them. These results are from FORMULATRIX-derived, in-house testing and should be used only as suggestions into what consumables to use for UV imaging.

 

As far as we can tell, Hampton provides four options with two choices for glass cover slides - siliconized or unsiliconized, and Tecan-compatible or not. We have tested older siliconized, non-Tecan slides and they work well. Both varieties of Tecan-compatible slides we found to autofluoresce.

 

General Cover Slide Guidance:

  • Siliconized, non-Tecan: work very well, but is an older and possibly discontinued formulation/material
  • Unsiliconized, non-Tecan: no data - awaiting samples from Hampton
  • Siliconized, Tecan: autofluoresces, essentially unusable
  • Unsiliconized, Tecan: autofluoresces, essentially unusable

 

UV Performance Rating Scale:

  • GREAT: high signal transmission and low autofluorescence. Great for long-term use.
  • GOOD: lacking in either signal strength or low autofluorescence. Investigate before committing to long-term use.
  • OK: even more lacking in either signal strength or low autofluorescence, but still useful. Would most likely require improvement for long-term use.
  • BAD: flawed, but useable for investigation/demonstrations. Not acceptable for long-term use.
  • UNUSABLE: critically flawed, do not use.
  • UNRELIABLE: UV performance varies due to changes in manufacturing.
Cover SlidePart #PerformanceTransmissionNotes
Greiner Siliconized, 18mm Round501870UNUSABLE 5%None
Hampton Siliconized, 12mm RoundHR3-277GOOD85%Mildly Autofluorescent
Hampton Siliconized, 12mm Round, TecanHR3-278TUNUSABLE4%Autofluorescent
Hampton Siliconized, 12mm Round ThickHR8-088BAD46%Autofluorescent
Hampton Siliconized, 18mm RoundHR3-239GOOD87%None
Hampton Siliconized, 22mm RoundHR3-231 GOOD87%None
Hampton Siliconized, 22mm Round ThickHR3-247BAD42%None
Hampton Siliconized, 22mm SquareHR3-215GOOD85%None
Hampton Siliconized, 22mm Square ThickHR3-223BAD45%None
Standard Plates

Formulations for given plastics/glasses may change with time which may affect UV performance. Unfortunately, because of this, we cannot 100% guarantee that the consumables that we have tested will have the exact UV properties every time you use them. These results are from FORMULATRIX-derived, in-house testing and should be used only as suggestions into what consumables to use for UV imaging.

 

If a plate is polystyrene chances are it'll have some sort of autofluorescence. The autofluorescence intensity varies from strong to weak. Polyolefin seems to work great, as does polypropylene (which unfortunately does not perform well optically under visible light). Curved-bottom wells tend to be usable in spite of small amounts of autofluorescence, but the trend is that flat-bottomed plates tend to be much better.

 

UV Performance Rating Scale:

  • GREAT: high signal transmission and low autofluorescence. Great for long-term use.
  • GOOD: lacking in either signal strength or low autofluorescence. Investigate before committing to long-term use.
  • OK: even more lacking in either signal strength or low autofluorescence, but still useful. Would most likely require improvement for long-term use.
  • BAD: flawed, but useable for investigation/demonstrations. Not acceptable for long-term use.
  • UNUSABLE: critically flawed, do not use.
  • UNRELIABLE: UV performance varies due to changes in manufacturing.
Plate TypePart #Drop TypePerformance
Axygen 96-1N/ASittingBAD
Corning COC, 96-1, round bottom, not treated3556SittingGREAT
Corning COC, 96-3, conical flat bottom, not treated3553SittingGREAT
Corning COC, 96-1, conical flat bottom, treated for hydrophilicity3551SittingGREAT
Corning COC, 96-3, 1ul conical flat bottom, not treated3550SittingGREAT
Corning CrystalEX, 96-1, round bottom, not treated3773SittingGOOD
Greiner Crystal Bridge for Combo Plate662145SittingBAD
Greiner Crystal Quick 96-3 flat well609830SittingGREAT
Greiner Crystal Quick 96-3 round well609820SittingBAD
Greiner CrystalQuick 96-1 low profile609180SittingOK
Greiner CrystalQuick 96-1, low profile, square wellsSittingGOOD
Greiner CrystalQuick 96-1, Square wells609871SittingGOOD
Innovaplate SD2 / MRC2 96-2HR3-082SittingGOOD
Intelli-Plate 24-4102-0004-00SittingUNUSEABLE
Intelli-Plate 48-2102-0002-00SittingOK
Intelli-Plate 96-2102-0011-00 SittingBAD
Intelli-Plate 96-3102-0001-03SittingUNUSEABLE
Intelli-Plate CrystalMation 96-3102-0001-13SittingUNUSEABLE
Intelli-Plate LVR 96-2102-0001-00SittingUNUSEABLE
Intelli-Plate LVR 96-3102-0001-03SittingUNUSEABLE
MiTeGen In-Situ-1InSitu-01CLSitting & HangingGREAT
MRC 96-3 (Swissci)HR-123SittingGOOD
MRC Maxi 48 PS (Swissci)MD11-004SittingBAD
MRC Maxi 48-1 UVP (Swissci)HR3-179SittingGREAT
Qiagen NeXtal Evolution132045SittingOK
TTP Labtech 96-34150-05823SittingGOOD
UVXPO 2 Lens (Swissci)UVXPO-2LENSSittingGREAT
Lipidic Cubic Phase (LCP) Plates

Formulations for given plastics/glasses may change with time which may affect UV performance. Unfortunately, because of this, we cannot 100% guarantee that the consumables that we have tested will have the exact UV properties every time you use them. These results are from FORMULATRIX-derived, in-house testing and should be used only as suggestions into what consumables to use for UV imaging.

LCP Plate MaterialPart #%T at 300 nm
Laminex UV Plastic CoverMD11-52 85%
Laminex Film CoverMD11-5480%
Laminex UV Plastic BaseMD11-5180%
Laminex Glass BaseMD11-5013%
Laminex Glass CoverMD11-5218%
Marienfeld Glass BaseHR3-15150%
Marienfeld Glass Cover13%