Single-cell sequencing of full-length transcripts and T-cell receptors with automated high-throughput Smart-seq3 Chuang, Hsiu-Chun, Ruidong, Li, Li, Li, Kai-Hui, Sun In: 2024. @article{noKey,
title = {Single-cell sequencing of full-length transcripts and T-cell receptors with automated high-throughput Smart-seq3},
author = {Chuang, Hsiu-Chun, Ruidong, Li, Li, Li, Kai-Hui, Sun},
url = {https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-024-11036-0},
doi = {https://doi.org/10.1186/s12864-024-11036-0},
year = {2024},
date = {2024-11-21},
abstract = {We developed an automated high-throughput Smart-seq3 (HT Smart-seq3) workflow that integrates best practices and an optimized protocol to enhance efficiency, scalability, and method reproducibility. This workflow consistently produces high-quality data with high cell capture efficiency and gene detection sensitivity. In a rigorous comparison with the 10X platform using human primary CD4 + T-cells, HT Smart-seq3 demonstrated higher cell capture efficiency, greater gene detection sensitivity, and lower dropout rates. Additionally, when sufficiently scaled, HT Smart-seq3 achieved a comparable resolution of cellular heterogeneity to 10X. Notably, through T-cell receptor (TCR) reconstruction, HT Smart-seq3 identified a greater number of productive alpha and beta chain pairs without the need for additional primer design to amplify full-length V(D)J segments, enabling more comprehensive TCR profiling across a broader range of species. Taken together, HT Smart-seq3 overcomes key technical challenges, offering distinct advantages that position it as a promising solution for the characterization of single-cell transcriptomes and immune repertoires, particularly well-suited for low-input, low-RNA content samples.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
We developed an automated high-throughput Smart-seq3 (HT Smart-seq3) workflow that integrates best practices and an optimized protocol to enhance efficiency, scalability, and method reproducibility. This workflow consistently produces high-quality data with high cell capture efficiency and gene detection sensitivity. In a rigorous comparison with the 10X platform using human primary CD4 + T-cells, HT Smart-seq3 demonstrated higher cell capture efficiency, greater gene detection sensitivity, and lower dropout rates. Additionally, when sufficiently scaled, HT Smart-seq3 achieved a comparable resolution of cellular heterogeneity to 10X. Notably, through T-cell receptor (TCR) reconstruction, HT Smart-seq3 identified a greater number of productive alpha and beta chain pairs without the need for additional primer design to amplify full-length V(D)J segments, enabling more comprehensive TCR profiling across a broader range of species. Taken together, HT Smart-seq3 overcomes key technical challenges, offering distinct advantages that position it as a promising solution for the characterization of single-cell transcriptomes and immune repertoires, particularly well-suited for low-input, low-RNA content samples. |
A bacterial immunity protein directly senses two disparate phage proteins Zhang, Tong In: 2024. @article{noKey,
title = {A bacterial immunity protein directly senses two disparate phage proteins},
author = {Zhang, Tong},
url = {https://www.nature.com/articles/s41586-024-08039-y},
doi = {https://doi.org/10.1038/s41586-024-08039-y},
year = {2024},
date = {2024-10-16},
abstract = {Eukaryotic innate immune systems use pattern recognition receptors to sense infection by detecting pathogen-associated molecular patterns, which then triggers an immune response. Bacteria have similarly evolved immunity proteins that sense certain components of their viral predators, known as bacteriophages1,2,3,4,5,6. Although different immunity proteins can recognize different phage-encoded triggers, individual bacterial immunity proteins have been found to sense only a single trigger during infection, suggesting a one-to-one relationship between bacterial pattern recognition receptors and their ligands7,8,9,10,11. Here we demonstrate that the antiphage defence protein CapRelSJ46 in Escherichia coli can directly bind and sense two completely unrelated and structurally different proteins using the same sensory domain, with overlapping but distinct interfaces. Our results highlight the notable versatility of an immune sensory domain, which may be a common property of antiphage defence systems that enables them to keep pace with their rapidly evolving viral predators. We found that Bas11 phages harbour both trigger proteins that are sensed by CapRelSJ46 during infection, and we demonstrate that such phages can fully evade CapRelSJ46 defence only when both triggers are mutated. Our work shows how a bacterial immune system that senses more than one trigger can help prevent phages from easily escaping detection, and it may allow the detection of a broader range of phages. More generally, our findings illustrate unexpected multifactorial sensing by bacterial defence systems and complex coevolutionary relationships between them and their phage-encoded triggers.},
keywords = {NT8},
pubstate = {published},
tppubtype = {article}
}
Eukaryotic innate immune systems use pattern recognition receptors to sense infection by detecting pathogen-associated molecular patterns, which then triggers an immune response. Bacteria have similarly evolved immunity proteins that sense certain components of their viral predators, known as bacteriophages1,2,3,4,5,6. Although different immunity proteins can recognize different phage-encoded triggers, individual bacterial immunity proteins have been found to sense only a single trigger during infection, suggesting a one-to-one relationship between bacterial pattern recognition receptors and their ligands7,8,9,10,11. Here we demonstrate that the antiphage defence protein CapRelSJ46 in Escherichia coli can directly bind and sense two completely unrelated and structurally different proteins using the same sensory domain, with overlapping but distinct interfaces. Our results highlight the notable versatility of an immune sensory domain, which may be a common property of antiphage defence systems that enables them to keep pace with their rapidly evolving viral predators. We found that Bas11 phages harbour both trigger proteins that are sensed by CapRelSJ46 during infection, and we demonstrate that such phages can fully evade CapRelSJ46 defence only when both triggers are mutated. Our work shows how a bacterial immune system that senses more than one trigger can help prevent phages from easily escaping detection, and it may allow the detection of a broader range of phages. More generally, our findings illustrate unexpected multifactorial sensing by bacterial defence systems and complex coevolutionary relationships between them and their phage-encoded triggers. |
A single Leishmania adenylate forming enzyme of the ANL superfamily generates both acetyl- and acetoacetyl-CoA J. Jezewski, Andrew In: 2024. @article{noKey,
title = {A single Leishmania adenylate forming enzyme of the ANL superfamily generates both acetyl- and acetoacetyl-CoA},
author = {J. Jezewski, Andrew},
url = {https://www.jbc.org/article/S0021-9258(24)02381-0/fulltext},
doi = {https://doi.org/10.1016/j.jbc.2024.107879},
year = {2024},
date = {2024-10-09},
abstract = {Leishmania, a protozoan parasite, is responsible for significant morbidity and mortality worldwide, manifesting as cutaneous, mucocutaneous, and visceral leishmaniasis. These diseases pose a substantial burden, especially in impoverished regions with limited access to effective medical treatments. Current therapies are toxic, have low efficacy, and face growing resistance. Understanding the metabolic pathways of Leishmania, particularly those differing from its host, can unveil potential therapeutic targets. In this study, we investigated the acetyl-CoA synthetase (ACS) enzyme from Leishmania infantum (LiAcs1), which, unlike many organisms, also exhibits acetoacetyl-CoA synthetase (KBC) activity. This dual functionality is unique among ANL superfamily enzymes and crucial for the parasite's reliance on leucine catabolism, energy production and sterol biosynthesis. Our biochemical characterization of LiAcs1 revealed its ability to utilize both acetate and acetoacetate substrates. Additionally, LiAcs1 displayed a distinct CoA substrate inhibition pattern, partially alleviated by acetoacetate. Structural analysis provided insights into the substrate binding flexibility of LiAcs1, highlighting a more promiscuous substrate pocket compared to other ACS or KBC-specific enzymes. Substrate mimetics elucidated its ability to accommodate both small and large AMP-ester derivatives, contributing to its dual ACS/KBC functionality. These findings not only advance our understanding of Leishmania metabolism but also present LiAcs1 as a promising drug target. The dual functionality of LiAcs1 underscores the potential for developing selective inhibitors that could disrupt critical metabolic pathways across Leishmania spp. as it appears this enzyme is highly conserved across this genus. This paves the way for developing novel effective treatments against this devastating disease.},
keywords = {NT8},
pubstate = {published},
tppubtype = {article}
}
Leishmania, a protozoan parasite, is responsible for significant morbidity and mortality worldwide, manifesting as cutaneous, mucocutaneous, and visceral leishmaniasis. These diseases pose a substantial burden, especially in impoverished regions with limited access to effective medical treatments. Current therapies are toxic, have low efficacy, and face growing resistance. Understanding the metabolic pathways of Leishmania, particularly those differing from its host, can unveil potential therapeutic targets. In this study, we investigated the acetyl-CoA synthetase (ACS) enzyme from Leishmania infantum (LiAcs1), which, unlike many organisms, also exhibits acetoacetyl-CoA synthetase (KBC) activity. This dual functionality is unique among ANL superfamily enzymes and crucial for the parasite's reliance on leucine catabolism, energy production and sterol biosynthesis. Our biochemical characterization of LiAcs1 revealed its ability to utilize both acetate and acetoacetate substrates. Additionally, LiAcs1 displayed a distinct CoA substrate inhibition pattern, partially alleviated by acetoacetate. Structural analysis provided insights into the substrate binding flexibility of LiAcs1, highlighting a more promiscuous substrate pocket compared to other ACS or KBC-specific enzymes. Substrate mimetics elucidated its ability to accommodate both small and large AMP-ester derivatives, contributing to its dual ACS/KBC functionality. These findings not only advance our understanding of Leishmania metabolism but also present LiAcs1 as a promising drug target. The dual functionality of LiAcs1 underscores the potential for developing selective inhibitors that could disrupt critical metabolic pathways across Leishmania spp. as it appears this enzyme is highly conserved across this genus. This paves the way for developing novel effective treatments against this devastating disease. |
Targeting RSV-neutralizing B cell receptors with anti-idiotypic antibodies C. Scharffenberger, Samuel In: 2024. @article{noKey,
title = {Targeting RSV-neutralizing B cell receptors with anti-idiotypic antibodies},
author = {C. Scharffenberger, Samuel},
url = {https://www.cell.com/cell-reports/fulltext/S2211-1247(24)01162-8},
doi = {https://doi.org/10.1016/j.celrep.2024.114811},
year = {2024},
date = {2024-10-08},
abstract = {Respiratory syncytial virus (RSV) causes lower respiratory tract infections with significant morbidity and mortality at the extremes of age. Vaccines based on the viral fusion protein are approved for adults over 60, but infant protection relies on passive immunity via antibody transfer or maternal vaccination. An infant vaccine that rapidly elicits protective antibodies would fulfill a critical unmet need. Antibodies arising from the VH3-21/VL1-40 gene pairing can neutralize RSV without the need for affinity maturation, making them attractive to target through vaccination. Here, we develop an anti-idiotypic monoclonal antibody (ai-mAb) immunogen that is specific for unmutated VH3-21/VL1-40 B cell receptors (BCRs). The ai-mAb efficiently engages B cells with bona fide target BCRs and does not activate off-target non-neutralizing B cells, unlike recombinant pre-fusion (preF) protein used in current RSV vaccines. These results establish proof of concept for using an ai-mAb-derived vaccine to target B cells hardwired to produce RSV-neutralizing antibodies.},
keywords = {NT8},
pubstate = {published},
tppubtype = {article}
}
Respiratory syncytial virus (RSV) causes lower respiratory tract infections with significant morbidity and mortality at the extremes of age. Vaccines based on the viral fusion protein are approved for adults over 60, but infant protection relies on passive immunity via antibody transfer or maternal vaccination. An infant vaccine that rapidly elicits protective antibodies would fulfill a critical unmet need. Antibodies arising from the VH3-21/VL1-40 gene pairing can neutralize RSV without the need for affinity maturation, making them attractive to target through vaccination. Here, we develop an anti-idiotypic monoclonal antibody (ai-mAb) immunogen that is specific for unmutated VH3-21/VL1-40 B cell receptors (BCRs). The ai-mAb efficiently engages B cells with bona fide target BCRs and does not activate off-target non-neutralizing B cells, unlike recombinant pre-fusion (preF) protein used in current RSV vaccines. These results establish proof of concept for using an ai-mAb-derived vaccine to target B cells hardwired to produce RSV-neutralizing antibodies. |
Structure-Based Engineering of Monoclonal Antibodies for Improved Binding to Counteract the Effects of Fentanyl and Carfentanil Rodarte, Justas In: 2024. @article{noKey,
title = {Structure-Based Engineering of Monoclonal Antibodies for Improved Binding to Counteract the Effects of Fentanyl and Carfentanil},
author = {Rodarte, Justas},
url = {https://pubs.acs.org/doi/full/10.1021/acsomega.4c06617},
doi = {https://doi.org/10.1021/acsomega.4c06617},
year = {2024},
date = {2024-10-07},
abstract = {The opioid overdose epidemic is a growing and evolving public health crisis fueled by the widespread presence of fentanyl and fentanyl analogues (F/FAs) in both street mixtures and counterfeit pills. To expand current treatment options, drug-targeting monoclonal antibodies (mAbs) offer a viable therapeutic for both pre- and postexposure clinical scenarios. This study reports the isolation, in vitro characterization, and in vivo efficacy of two murine mAb families targeting fentanyl, carfentanil, or both. Because humanization of the mAbs by CDR grafting negatively impacted affinity for both fentanyl and carfentanil, crystal structures of mAbs in complex with fentanyl or carfentanil were analyzed to identify key residues involved in ligand binding in murine versus humanized structures, and site-directed mutagenesis was used to verify their functional importance. The structural analysis identified a framework residue, Tyr36, present in the murine germline sequence of two mAbs, which was critical for binding to fentanyl and carfentanil. These studies emphasize the importance of structural considerations in mAb engineering to optimize mAbs targeting small molecules including opioids and other drugs of public health interest.},
keywords = {NT8},
pubstate = {published},
tppubtype = {article}
}
The opioid overdose epidemic is a growing and evolving public health crisis fueled by the widespread presence of fentanyl and fentanyl analogues (F/FAs) in both street mixtures and counterfeit pills. To expand current treatment options, drug-targeting monoclonal antibodies (mAbs) offer a viable therapeutic for both pre- and postexposure clinical scenarios. This study reports the isolation, in vitro characterization, and in vivo efficacy of two murine mAb families targeting fentanyl, carfentanil, or both. Because humanization of the mAbs by CDR grafting negatively impacted affinity for both fentanyl and carfentanil, crystal structures of mAbs in complex with fentanyl or carfentanil were analyzed to identify key residues involved in ligand binding in murine versus humanized structures, and site-directed mutagenesis was used to verify their functional importance. The structural analysis identified a framework residue, Tyr36, present in the murine germline sequence of two mAbs, which was critical for binding to fentanyl and carfentanil. These studies emphasize the importance of structural considerations in mAb engineering to optimize mAbs targeting small molecules including opioids and other drugs of public health interest. |
Structural studies of β-glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus I. Sotiropoulou, Anastasia In: 2024. @article{noKey,
title = {Structural studies of β-glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus},
author = {I. Sotiropoulou, Anastasia},
url = {https://journals.iucr.org/d/issues/2024/10/00/gm5108/index.html},
doi = {https://doi.org/10.1107/S2059798324009252},
year = {2024},
date = {2024-10-01},
abstract = {β-Glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus (Bgl1) has been denoted as having an attractive catalytic profile for various industrial applications. Bgl1 catalyses the final step of in the decomposition of cellulose, an unbranched glucose polymer that has attracted the attention of researchers in recent years as it is the most abundant renewable source of reduced carbon in the biosphere. With the aim of enhancing the thermostability of Bgl1 for a broad spectrum of biotechnological processes, it has been subjected to structural studies. Crystal structures of Bgl1 and its complex with glucose were determined at 1.47 and 1.95 Å resolution, respectively. Bgl1 is a member of glycosyl hydrolase family 1 (GH1 superfamily, EC 3.2.1.21) and the results showed that the 3D structure of Bgl1 follows the overall architecture of the GH1 family, with a classical (β/α)8 TIM-barrel fold. Comparisons of Bgl1 with sequence or structural homologues of β-glucosidase reveal quite similar structures but also unique structural features in Bgl1 with plausible functional roles.},
keywords = {ROCKIMAGER},
pubstate = {published},
tppubtype = {article}
}
β-Glucosidase from the thermophilic bacterium Caldicellulosiruptor saccharolyticus (Bgl1) has been denoted as having an attractive catalytic profile for various industrial applications. Bgl1 catalyses the final step of in the decomposition of cellulose, an unbranched glucose polymer that has attracted the attention of researchers in recent years as it is the most abundant renewable source of reduced carbon in the biosphere. With the aim of enhancing the thermostability of Bgl1 for a broad spectrum of biotechnological processes, it has been subjected to structural studies. Crystal structures of Bgl1 and its complex with glucose were determined at 1.47 and 1.95 Å resolution, respectively. Bgl1 is a member of glycosyl hydrolase family 1 (GH1 superfamily, EC 3.2.1.21) and the results showed that the 3D structure of Bgl1 follows the overall architecture of the GH1 family, with a classical (β/α)8 TIM-barrel fold. Comparisons of Bgl1 with sequence or structural homologues of β-glucosidase reveal quite similar structures but also unique structural features in Bgl1 with plausible functional roles. |
Crystal structure of Alzheimer's disease phospholipase D3 provides a molecular basis for understanding its normal and pathological functions Ishii, Kenta In: 2024. @article{noKey,
title = {Crystal structure of Alzheimer's disease phospholipase D3 provides a molecular basis for understanding its normal and pathological functions},
author = {Ishii, Kenta},
url = {https://febs.onlinelibrary.wiley.com/doi/full/10.1111/febs.17277},
doi = {https://doi.org/10.1111/febs.17277},
year = {2024},
date = {2024-09-26},
abstract = {Human 5′-3′ exonuclease PLD3, a member of the phospholipase D family of enzymes, has been validated as a therapeutic target for treating Alzheimer's disease. Here, we have determined the crystal structure of the luminal domain of the enzyme at 2.3 Å resolution, revealing a bilobal structure with a catalytic site located between the lobes. We then compared the structure with published crystal structures of other human PLD family members which revealed that a number of catalytic and lipid recognition residues, previously shown to be key for phospholipase activity, are not conserved or, are absent. This led us to test whether the enzyme is actually a phospholipase. We could not measure any phospholipase activity but the enzyme shows robust nuclease activity. Finally, we have mapped key single nucleotide polymorphisms onto the structure which reveals plausible reasons as to why they have an impact on Alzheimer's disease.},
keywords = {NT8},
pubstate = {published},
tppubtype = {article}
}
Human 5′-3′ exonuclease PLD3, a member of the phospholipase D family of enzymes, has been validated as a therapeutic target for treating Alzheimer's disease. Here, we have determined the crystal structure of the luminal domain of the enzyme at 2.3 Å resolution, revealing a bilobal structure with a catalytic site located between the lobes. We then compared the structure with published crystal structures of other human PLD family members which revealed that a number of catalytic and lipid recognition residues, previously shown to be key for phospholipase activity, are not conserved or, are absent. This led us to test whether the enzyme is actually a phospholipase. We could not measure any phospholipase activity but the enzyme shows robust nuclease activity. Finally, we have mapped key single nucleotide polymorphisms onto the structure which reveals plausible reasons as to why they have an impact on Alzheimer's disease. |
Data driven techniques for the analysis of oral dosage drug formulations Cao, Ziyi In: 2024. @article{noKey,
title = {Data driven techniques for the analysis of oral dosage drug formulations},
author = {Cao, Ziyi},
url = {https://hammer.purdue.edu/articles/thesis/DATA_DRIVEN_TECHNIQUES_FOR_THE_ANALYSIS_OF_ORAL_DOSAGE_DRUG_FORMULATIONS/24142605?file=42411960},
doi = {https://doi.org/10.25394/PGS.24142605.v1},
year = {2024},
date = {2024-09-20},
abstract = {This thesis focusses on developing novel data driven oral drug formulation analysis methods by employing technologies such as Fourier transform analysis and generative adversarial learning. Data driven measurements have been addressing challenges in advanced manufacturing and analysis for pharmaceutical development for the last two decade. Data science combined with analytical chemistry holds the future to solving key problems in the next wave of industrial research and development. Data acquisition is expensive in the realm of pharmaceutical development, and how to leverage the capability of data science to extract information in data deprived circumstances is a key aspect for improving such data driven measurements. Among multiple measurement techniques, chemical imaging is an informative tool for analyzing oral drug formulations. However, chemical imaging can often fall into data deprived situations, where data could be limited from the time-consuming sample preparation or related chemical synthesis. An integrated imaging approach, which folds data science techniques into chemical measurements, could lead to a future of informative and cost-effective data driven measurements. In this thesis, the development of data driven chemical imaging techniques for the analysis of oral drug formulations via Fourier transformation and generative adversarial learning are elaborated. Chapter 1 begins with a brief introduction of current techniques commonly implemented within the pharmaceutical industry, their limitations, and how the limitations are being addressed. Chapter 2 discusses how Fourier transform fluorescence recovery after photobleaching (FT-FRAP) technique can be used for monitoring the phase separated drug-polymer aggregation. Chapter 3 follows the innovation presented in Chapter 1 and illustrates how analysis can be improved by incorporating diffractive optical elements in the patterned illumination. While previous chapters discuss dynamic analysis aspects of drug product formulation, Chapter 4 elaborates on the innovation in composition analysis of oral drug products via use of novel generative adversarial learning methods for linear analyses.},
keywords = {FRAP},
pubstate = {published},
tppubtype = {article}
}
This thesis focusses on developing novel data driven oral drug formulation analysis methods by employing technologies such as Fourier transform analysis and generative adversarial learning. Data driven measurements have been addressing challenges in advanced manufacturing and analysis for pharmaceutical development for the last two decade. Data science combined with analytical chemistry holds the future to solving key problems in the next wave of industrial research and development. Data acquisition is expensive in the realm of pharmaceutical development, and how to leverage the capability of data science to extract information in data deprived circumstances is a key aspect for improving such data driven measurements. Among multiple measurement techniques, chemical imaging is an informative tool for analyzing oral drug formulations. However, chemical imaging can often fall into data deprived situations, where data could be limited from the time-consuming sample preparation or related chemical synthesis. An integrated imaging approach, which folds data science techniques into chemical measurements, could lead to a future of informative and cost-effective data driven measurements. In this thesis, the development of data driven chemical imaging techniques for the analysis of oral drug formulations via Fourier transformation and generative adversarial learning are elaborated. Chapter 1 begins with a brief introduction of current techniques commonly implemented within the pharmaceutical industry, their limitations, and how the limitations are being addressed. Chapter 2 discusses how Fourier transform fluorescence recovery after photobleaching (FT-FRAP) technique can be used for monitoring the phase separated drug-polymer aggregation. Chapter 3 follows the innovation presented in Chapter 1 and illustrates how analysis can be improved by incorporating diffractive optical elements in the patterned illumination. While previous chapters discuss dynamic analysis aspects of drug product formulation, Chapter 4 elaborates on the innovation in composition analysis of oral drug products via use of novel generative adversarial learning methods for linear analyses. |
The Human T-cell Leukemia Virus capsid protein is a potential drug target Yu, Ruijie In: 2024. @article{noKey,
title = {The Human T-cell Leukemia Virus capsid protein is a potential drug target},
author = {Yu, Ruijie},
url = {https://www.biorxiv.org/content/10.1101/2024.09.09.612167v1.abstract},
doi = {https://doi.org/10.1101/2024.09.09.612167},
year = {2024},
date = {2024-09-10},
abstract = {Human T-cell Leukemia Virus type 1 (HTLV-1) is an untreatable retrovirus that causes lethal malignancies and degenerative inflammatory conditions. Effective treatments have been delayed by substantial gaps in our knowledge of the fundamental virology, especially when compared to the closely related virus, HIV. A recently developed and highly effective anti-HIV strategy is to target the virus with drugs that interfere with capsid integrity and interactions with the host. Importantly, the first in class anti-capsid drug approved, lenacapavir, can provide long-acting pre-exposure prophylaxis. Such a property would provide a means to prevent the transmission of HTLV-1, but its capsid has not previously been considered as a drug target. Here we describe the first high-resolution crystal structures of the HTLV-1 capsid protein, define essential lattice interfaces, and identify a previously unknown ligand-binding pocket. We show that this pocket is essential for virus infectivity, providing a potential target for future anti-capsid drug development.},
keywords = {NT8},
pubstate = {published},
tppubtype = {article}
}
Human T-cell Leukemia Virus type 1 (HTLV-1) is an untreatable retrovirus that causes lethal malignancies and degenerative inflammatory conditions. Effective treatments have been delayed by substantial gaps in our knowledge of the fundamental virology, especially when compared to the closely related virus, HIV. A recently developed and highly effective anti-HIV strategy is to target the virus with drugs that interfere with capsid integrity and interactions with the host. Importantly, the first in class anti-capsid drug approved, lenacapavir, can provide long-acting pre-exposure prophylaxis. Such a property would provide a means to prevent the transmission of HTLV-1, but its capsid has not previously been considered as a drug target. Here we describe the first high-resolution crystal structures of the HTLV-1 capsid protein, define essential lattice interfaces, and identify a previously unknown ligand-binding pocket. We show that this pocket is essential for virus infectivity, providing a potential target for future anti-capsid drug development. |
Short CDRL1 in intermediate VRC01-like mAbs is not sufficient to overcome key glycan barriers on HIV-1 Env Agrawal, Parul In: 2024. @article{noKey,
title = {Short CDRL1 in intermediate VRC01-like mAbs is not sufficient to overcome key glycan barriers on HIV-1 Env},
author = {Agrawal, Parul},
url = {https://journals.asm.org/doi/epub/10.1128/jvi.00744-24},
doi = {https://doi.org/10.1128/jvi.00744-24},
year = {2024},
date = {2024-09-06},
abstract = {VRC01-class broadly neutralizing antibodies (bnAbs) have been isolated from people with HIV-1, but they have not yet been elicited by vaccination. They are extensively somatically mutated and sometimes accumulate CDRL1 deletions. Such indels may allow VRC01-class antibodies to accommodate the glycans expressed on a conserved N276 N-linked glycosylation site in loop D of the gp120 subunit. These glycans constitute a major obstacle in the development of VRC01-class antibodies, as unmutated antibody forms are unable to accommodate them. Although immunizations of knock-in mice expressing human VRC01-class B-cell receptors (BCRs) with specifically designed Env-derived immunogens lead to the accumulation of somatic mutations in VRC01-class BCRs, CDRL1 deletions are rarely observed, and the elicited antibodies display narrow neutralizing activities. The lack of broad neutralizing potential could be due to the absence of deletions, the lack of appropriate somatic mutations, or both. To address this point, we modified our previously determined prime-boost immunization with a germline-targeting immunogen nanoparticle (426c.Mod.Core), followed by a heterologous core nanoparticle (HxB2.WT.Core), by adding a final boost with a cocktail of various stabilized soluble Env trimers. We isolated VRC01-like antibodies with extensive somatic mutations and, in one case, a seven-amino acid CDRL1 deletion. We generated chimeric antibodies that combine the vaccine-elicited somatic mutations with CDRL1 deletions present in human mature VRC01 bnAbs. We observed that CDRL1 indels did not improve the neutralizing antibody activities. Our study indicates that CDRL1 length by itself is not sufficient for the broadly neutralizing phenotype of this class of antibodies.},
keywords = {NT8},
pubstate = {published},
tppubtype = {article}
}
VRC01-class broadly neutralizing antibodies (bnAbs) have been isolated from people with HIV-1, but they have not yet been elicited by vaccination. They are extensively somatically mutated and sometimes accumulate CDRL1 deletions. Such indels may allow VRC01-class antibodies to accommodate the glycans expressed on a conserved N276 N-linked glycosylation site in loop D of the gp120 subunit. These glycans constitute a major obstacle in the development of VRC01-class antibodies, as unmutated antibody forms are unable to accommodate them. Although immunizations of knock-in mice expressing human VRC01-class B-cell receptors (BCRs) with specifically designed Env-derived immunogens lead to the accumulation of somatic mutations in VRC01-class BCRs, CDRL1 deletions are rarely observed, and the elicited antibodies display narrow neutralizing activities. The lack of broad neutralizing potential could be due to the absence of deletions, the lack of appropriate somatic mutations, or both. To address this point, we modified our previously determined prime-boost immunization with a germline-targeting immunogen nanoparticle (426c.Mod.Core), followed by a heterologous core nanoparticle (HxB2.WT.Core), by adding a final boost with a cocktail of various stabilized soluble Env trimers. We isolated VRC01-like antibodies with extensive somatic mutations and, in one case, a seven-amino acid CDRL1 deletion. We generated chimeric antibodies that combine the vaccine-elicited somatic mutations with CDRL1 deletions present in human mature VRC01 bnAbs. We observed that CDRL1 indels did not improve the neutralizing antibody activities. Our study indicates that CDRL1 length by itself is not sufficient for the broadly neutralizing phenotype of this class of antibodies. |
Dynamic and structural insights into allosteric regulation on MKP5 a dual-specificity phosphatase Skeens, Erin In: 2024. @article{noKey,
title = {Dynamic and structural insights into allosteric regulation on MKP5 a dual-specificity phosphatase},
author = {Skeens, Erin},
url = {https://www.biorxiv.org/content/10.1101/2024.09.05.611520v1.abstract},
doi = {https://doi.org/10.1101/2024.09.05.611520},
year = {2024},
date = {2024-09-05},
abstract = {Dual-specificity mitogen-activated protein kinase (MAPK) phosphatases (MKPs) directly dephosphorylate and inactivate the MAPKs. Although the catalytic mechanism of dephosphorylation of the MAPKs by the MKPs is established, a complete molecular picture of the regulatory interplay between the MAPKs and MKPs still remains to be fully explored. Here, we sought to define the molecular mechanism of MKP5 regulation through an allosteric site within its catalytic domain. We demonstrate using crystallographic and NMR spectroscopy approaches that residue Y435 is required to maintain the structural integrity of the allosteric pocket. Along with molecular dynamics simulations, these data provide insight into how changes in the allosteric pocket propagate conformational flexibility in the surrounding loops to reorganize catalytically crucial residues in the active site. Furthermore, Y435 contributes to the interaction with p38 MAPK and JNK, thereby promoting dephosphorylation. Collectively, these results highlight the role of Y435 in the allosteric site as a novel mode of MKP5 regulation by p38 MAPK and JNK},
keywords = {NT8},
pubstate = {published},
tppubtype = {article}
}
Dual-specificity mitogen-activated protein kinase (MAPK) phosphatases (MKPs) directly dephosphorylate and inactivate the MAPKs. Although the catalytic mechanism of dephosphorylation of the MAPKs by the MKPs is established, a complete molecular picture of the regulatory interplay between the MAPKs and MKPs still remains to be fully explored. Here, we sought to define the molecular mechanism of MKP5 regulation through an allosteric site within its catalytic domain. We demonstrate using crystallographic and NMR spectroscopy approaches that residue Y435 is required to maintain the structural integrity of the allosteric pocket. Along with molecular dynamics simulations, these data provide insight into how changes in the allosteric pocket propagate conformational flexibility in the surrounding loops to reorganize catalytically crucial residues in the active site. Furthermore, Y435 contributes to the interaction with p38 MAPK and JNK, thereby promoting dephosphorylation. Collectively, these results highlight the role of Y435 in the allosteric site as a novel mode of MKP5 regulation by p38 MAPK and JNK |
Development of a sensitive high-throughput enzymatic assay capable of measuring sub-nanomolar inhibitors of SARS-CoV2 Mpro Kovar, Peter In: 2024. @article{noKey,
title = {Development of a sensitive high-throughput enzymatic assay capable of measuring sub-nanomolar inhibitors of SARS-CoV2 Mpro},
author = {Kovar, Peter},
url = {https://www.sciencedirect.com/science/article/pii/S2472555224000418},
doi = {https://doi.org/10.1016/j.slasd.2024.100179},
year = {2024},
date = {2024-09-01},
abstract = {The SARS-CoV-2 main protease (Mpro) is essential for viral replication because it is responsible for the processing of most of the non-structural proteins encoded by the virus. Inhibition of Mpro prevents viral replication and therefore constitutes an attractive antiviral strategy. We set out to develop a high-throughput Mpro enzymatic activity assay using fluorescently labeled peptide substrates. A library of fluorogenic substrates of various lengths, sequences and dye/quencher positions was prepared and tested against full length SARS-CoV-2 Mpro enzyme for optimal activity. The addition of buffers containing strongly hydrated kosmotropic anion salts, such as citrate, from the Hofmeister series significantly boosted the enzyme activity and enhanced the assay detection limit, enabling the ranking of sub-nanomolar inhibitors without relying on the low-throughput Morrison equation method. By comparing cooperativity in citrate or non-citrate buffer while titrating the Mpro enzyme concentration, we found full positive cooperativity of Mpro with citrate buffer at less than one nanomolar (nM), but at a much higher enzyme concentration (∼320 nM) with non-citrate buffer. In addition, using a tight binding Mpro inhibitor, we confirmed there was only one active catalytical site in each Mpro monomer. Since cooperativity requires at least two binding sites, we hypothesized that citrate facilitates dimerization of Mpro at sub-nanomolar concentration as one of the mechanisms enhances Mpro catalytic efficiency. This assay has been used in high-throughput screening and structure activity relationship (SAR) studies to support medicinal chemistry efforts. IC50 values determined in this assay correlates well with EC50 values generated by a SARS-CoV-2 antiviral assay after adjusted for cell penetration.},
keywords = {TEMPEST},
pubstate = {published},
tppubtype = {article}
}
The SARS-CoV-2 main protease (Mpro) is essential for viral replication because it is responsible for the processing of most of the non-structural proteins encoded by the virus. Inhibition of Mpro prevents viral replication and therefore constitutes an attractive antiviral strategy. We set out to develop a high-throughput Mpro enzymatic activity assay using fluorescently labeled peptide substrates. A library of fluorogenic substrates of various lengths, sequences and dye/quencher positions was prepared and tested against full length SARS-CoV-2 Mpro enzyme for optimal activity. The addition of buffers containing strongly hydrated kosmotropic anion salts, such as citrate, from the Hofmeister series significantly boosted the enzyme activity and enhanced the assay detection limit, enabling the ranking of sub-nanomolar inhibitors without relying on the low-throughput Morrison equation method. By comparing cooperativity in citrate or non-citrate buffer while titrating the Mpro enzyme concentration, we found full positive cooperativity of Mpro with citrate buffer at less than one nanomolar (nM), but at a much higher enzyme concentration (∼320 nM) with non-citrate buffer. In addition, using a tight binding Mpro inhibitor, we confirmed there was only one active catalytical site in each Mpro monomer. Since cooperativity requires at least two binding sites, we hypothesized that citrate facilitates dimerization of Mpro at sub-nanomolar concentration as one of the mechanisms enhances Mpro catalytic efficiency. This assay has been used in high-throughput screening and structure activity relationship (SAR) studies to support medicinal chemistry efforts. IC50 values determined in this assay correlates well with EC50 values generated by a SARS-CoV-2 antiviral assay after adjusted for cell penetration. |
The C2 domain augments Ras GTPase Activating Protein catalytic activity E. Paul, Maxum In: 2024. @article{noKey,
title = {The C2 domain augments Ras GTPase Activating Protein catalytic activity},
author = {E. Paul, Maxum},
url = {https://www.biorxiv.org/content/10.1101/2024.08.29.609784v1.abstract},
doi = {https://doi.org/10.1101/2024.08.29.609784},
year = {2024},
date = {2024-08-29},
abstract = {Regulation of Ras GTPases by GTPase activating proteins (GAP) is essential for their normal signaling. Nine of the ten GAPs for Ras contain a C2 domain immediately proximal to their canonical GAP domain, and in RasGAP (p120GAP, p120RasGAP; RASA1) mutation of this domain is associated with vascular malformations in humans. Here, we show that the C2 domain of RasGAP is required for full catalytic activity towards Ras. Analysis of the RasGAP C2-GAP crystal structure, AlphaFold models, and sequence conservation reveal direct C2 domain interaction with the Ras allosteric lobe. This is achieved by an evolutionarily conserved surface centered around RasGAP residue R707, point mutation of which impairs the catalytic advantage conferred by the C2 domain in vitro. In mice, R707C mutation phenocopies the vascular and signaling defects resulting from constitutive disruption of the RASA1 gene. In SynGAP, mutation of the equivalent conserved C2 domain surface impairs catalytic activity. Our results indicate that the C2 domain is required to achieve full catalytic activity of Ras GTPase activating proteins.},
keywords = {NT8},
pubstate = {published},
tppubtype = {article}
}
Regulation of Ras GTPases by GTPase activating proteins (GAP) is essential for their normal signaling. Nine of the ten GAPs for Ras contain a C2 domain immediately proximal to their canonical GAP domain, and in RasGAP (p120GAP, p120RasGAP; RASA1) mutation of this domain is associated with vascular malformations in humans. Here, we show that the C2 domain of RasGAP is required for full catalytic activity towards Ras. Analysis of the RasGAP C2-GAP crystal structure, AlphaFold models, and sequence conservation reveal direct C2 domain interaction with the Ras allosteric lobe. This is achieved by an evolutionarily conserved surface centered around RasGAP residue R707, point mutation of which impairs the catalytic advantage conferred by the C2 domain in vitro. In mice, R707C mutation phenocopies the vascular and signaling defects resulting from constitutive disruption of the RASA1 gene. In SynGAP, mutation of the equivalent conserved C2 domain surface impairs catalytic activity. Our results indicate that the C2 domain is required to achieve full catalytic activity of Ras GTPase activating proteins. |
Bimodal substrate binding in the active site of the glycosidase BcX Saberi, Mahin In: 2024. @article{noKey,
title = {Bimodal substrate binding in the active site of the glycosidase BcX},
author = {Saberi, Mahin},
url = {https://febs.onlinelibrary.wiley.com/doi/full/10.1111/febs.17251},
doi = {https://doi.org/10.1111/febs.17251},
year = {2024},
date = {2024-08-26},
abstract = {Bacillus circulans xylanase (BcX) from the glycoside hydrolase family 11 degrades xylan through a retaining, double-displacement mechanism. The enzyme is thought to hydrolyze glycosidic bonds in a processive manner and has a large, active site cleft, with six subsites allowing the binding of six xylose units. Such an active site architecture suggests that oligomeric xylose substrates can bind in multiple ways. In the crystal structure of the catalytically inactive variant BcX E78Q, the substrate xylotriose is observed in the active site, as well as bound to the known secondary binding site and a third site on the protein surface. Nuclear magnetic resonance (NMR) titrations with xylose oligomers of different lengths yield nonlinear chemical shift trajectories for active site nuclei resonances, indicative of multiple binding orientations for these substrates for which binding and dissociation are in fast exchange on the NMR timescale, exchanging on the micro- to millisecond timescale. Active site binding can be modeled with a 2 : 1 model with dissociation constants in the low and high millimolar range. Extensive mutagenesis of active site residues indicates that tight binding occurs in the glycon binding site and is stabilized by Trp9 and the thumb region. Mutations F125A and W71A lead to large structural rearrangements. Binding at the glycon site is sensed throughout the active site, whereas the weak binding mostly affects the aglycon site. The interactions with the two active site locations are largely independent of each other and of binding at the secondary binding site.},
keywords = {NT8},
pubstate = {published},
tppubtype = {article}
}
Bacillus circulans xylanase (BcX) from the glycoside hydrolase family 11 degrades xylan through a retaining, double-displacement mechanism. The enzyme is thought to hydrolyze glycosidic bonds in a processive manner and has a large, active site cleft, with six subsites allowing the binding of six xylose units. Such an active site architecture suggests that oligomeric xylose substrates can bind in multiple ways. In the crystal structure of the catalytically inactive variant BcX E78Q, the substrate xylotriose is observed in the active site, as well as bound to the known secondary binding site and a third site on the protein surface. Nuclear magnetic resonance (NMR) titrations with xylose oligomers of different lengths yield nonlinear chemical shift trajectories for active site nuclei resonances, indicative of multiple binding orientations for these substrates for which binding and dissociation are in fast exchange on the NMR timescale, exchanging on the micro- to millisecond timescale. Active site binding can be modeled with a 2 : 1 model with dissociation constants in the low and high millimolar range. Extensive mutagenesis of active site residues indicates that tight binding occurs in the glycon binding site and is stabilized by Trp9 and the thumb region. Mutations F125A and W71A lead to large structural rearrangements. Binding at the glycon site is sensed throughout the active site, whereas the weak binding mostly affects the aglycon site. The interactions with the two active site locations are largely independent of each other and of binding at the secondary binding site. |
Discovery of potent SARS-CoV-2 nsp3 macrodomain inhibitors uncovers lack of translation to cellular antiviral response A. Lee, Alpha In: 2024. @article{noKey,
title = {Discovery of potent SARS-CoV-2 nsp3 macrodomain inhibitors uncovers lack of translation to cellular antiviral response},
author = {A. Lee, Alpha},
url = {https://www.biorxiv.org/content/10.1101/2024.08.19.608619v1.abstract},
doi = {https://doi.org/10.1101/2024.08.19.608619},
year = {2024},
date = {2024-08-21},
abstract = {A strategy for pandemic preparedness is the development of antivirals against a wide set of viral targets with complementary mechanisms of action. SARS-CoV-2 nsp3-mac1 is a viral macrodomain with ADP-ribosylhydrolase activity, which counteracts host immune response. Targeting the virus' immunomodulatory functionality offers a differentiated strategy to inhibit SARS-CoV-2 compared to approved therapeutics, which target viral replication directly. Here we report a fragment-based lead generation campaign guided by computational approaches. We discover tool compounds which inhibit nsp3-mac1 activity at low nanomolar concentrations, and with responsive structure-activity relationships, high selectivity, and drug-like properties. Using our inhibitors, we show that inhibition of nsp3-mac1 increases ADP-ribosylation, but surprisingly does not translate to demonstrable antiviral activity in cell culture and iPSC-derived pneumocyte models. Further, no synergistic activity is observed in combination with interferon gamma, a main protease inhibitor, nor a papain-like protease inhibitor. Our results question the extent to which targeting modulation of innate immunitydriven ADP-ribosylation can influence SARS-CoV-2 replication. Moreover, these findings suggest that nsp3-mac1 might not be a suitable target for antiviral therapeutics development.},
keywords = {ROCKIMAGER},
pubstate = {published},
tppubtype = {article}
}
A strategy for pandemic preparedness is the development of antivirals against a wide set of viral targets with complementary mechanisms of action. SARS-CoV-2 nsp3-mac1 is a viral macrodomain with ADP-ribosylhydrolase activity, which counteracts host immune response. Targeting the virus' immunomodulatory functionality offers a differentiated strategy to inhibit SARS-CoV-2 compared to approved therapeutics, which target viral replication directly. Here we report a fragment-based lead generation campaign guided by computational approaches. We discover tool compounds which inhibit nsp3-mac1 activity at low nanomolar concentrations, and with responsive structure-activity relationships, high selectivity, and drug-like properties. Using our inhibitors, we show that inhibition of nsp3-mac1 increases ADP-ribosylation, but surprisingly does not translate to demonstrable antiviral activity in cell culture and iPSC-derived pneumocyte models. Further, no synergistic activity is observed in combination with interferon gamma, a main protease inhibitor, nor a papain-like protease inhibitor. Our results question the extent to which targeting modulation of innate immunitydriven ADP-ribosylation can influence SARS-CoV-2 replication. Moreover, these findings suggest that nsp3-mac1 might not be a suitable target for antiviral therapeutics development. |
Crystallisation protocol for SARS-CoV-2 nsp3 macrodomain in P1 21 1 Aschenbrenner, Jasmin In: 2024. @article{noKey,
title = {Crystallisation protocol for SARS-CoV-2 nsp3 macrodomain in P1 21 1},
author = {Aschenbrenner, Jasmin},
url = {https://www.protocols.io/view/crystallisation-protocol-for-sars-cov-2-nsp3-macro-df6a3rae.html},
doi = {https://dx.doi.org/10.17504/protocols.io.261ge5ej7g47/v1},
year = {2024},
date = {2024-08-19},
abstract = {The COVID-19 pandemic has demonstrated the need for novel therapeutic interventions and improved pandemic preparedness strategies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This protocol details an optimized crystallization method for the SARS-CoV-2 nsp3 macrodomain, a potential drug target. Using sitting drop vapor diffusion with seeding, we describe specific buffer conditions and procedures to consistently produce high-quality crystals suitable for XChem fragment screening. The method yields crystals that diffract to an average resolution of 1.5 Å, enabling high-resolution structural studies and can also be used for compound development through co-crystallization experiments.
All structures solved during the development of tool compounds for the SARS-CoV-2 nsp3 macrodomain are deposited on the PDB (Group deposition: G_1002283).},
keywords = {ROCKIMAGER},
pubstate = {published},
tppubtype = {article}
}
The COVID-19 pandemic has demonstrated the need for novel therapeutic interventions and improved pandemic preparedness strategies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This protocol details an optimized crystallization method for the SARS-CoV-2 nsp3 macrodomain, a potential drug target. Using sitting drop vapor diffusion with seeding, we describe specific buffer conditions and procedures to consistently produce high-quality crystals suitable for XChem fragment screening. The method yields crystals that diffract to an average resolution of 1.5 Å, enabling high-resolution structural studies and can also be used for compound development through co-crystallization experiments.
All structures solved during the development of tool compounds for the SARS-CoV-2 nsp3 macrodomain are deposited on the PDB (Group deposition: G_1002283). |
Crystallisation protocol for SARS-CoV-2 nsp3 macrodomain in P43 Aschenbrenner, Jasmin In: 2024. @article{noKey,
title = {Crystallisation protocol for SARS-CoV-2 nsp3 macrodomain in P43},
author = {Aschenbrenner, Jasmin},
url = {https://www.protocols.io/view/crystallisation-protocol-for-sars-cov-2-nsp3-macro-djdn4i5e.html},
doi = {https://dx.doi.org/10.17504/protocols.io.e6nvw1qb2lmk/v1},
year = {2024},
date = {2024-08-19},
abstract = {The COVID-19 pandemic has demonstrated the need for novel therapeutic interventions and improved pandemic preparedness strategies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This protocol details an optimized crystallization method for the SARS-CoV-2 nsp3 macrodomain, a potential drug target. Using sitting drop vapor diffusion, we describe specific buffer conditions and procedures to consistently produce high-quality crystals suitable for XChem fragment screening. The method yields crystals that diffract to an average resolution of 1.2 Å, enabling high-resolution structural studies.
All structures solved during the development of tool compounds for the SARS-CoV-2 nsp3 macrodomain are deposited on the PDB (Group deposition: G_1002283).},
keywords = {ROCKIMAGER},
pubstate = {published},
tppubtype = {article}
}
The COVID-19 pandemic has demonstrated the need for novel therapeutic interventions and improved pandemic preparedness strategies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This protocol details an optimized crystallization method for the SARS-CoV-2 nsp3 macrodomain, a potential drug target. Using sitting drop vapor diffusion, we describe specific buffer conditions and procedures to consistently produce high-quality crystals suitable for XChem fragment screening. The method yields crystals that diffract to an average resolution of 1.2 Å, enabling high-resolution structural studies.
All structures solved during the development of tool compounds for the SARS-CoV-2 nsp3 macrodomain are deposited on the PDB (Group deposition: G_1002283). |
Borrelia burgdorferi BB0346 is an Essential, Structurally Variant LolA Homolog that is Primarily Required for Homeostatic Localization of Periplasmic Lipoproteins T. Murphy, Bryan In: 2024. @article{noKey,
title = {Borrelia burgdorferi BB0346 is an Essential, Structurally Variant LolA Homolog that is Primarily Required for Homeostatic Localization of Periplasmic Lipoproteins},
author = {T. Murphy, Bryan},
url = {https://www.biorxiv.org/content/10.1101/2024.08.06.606844v1.abstract},
doi = {https://doi.org/10.1101/2024.08.06.606844},
year = {2024},
date = {2024-08-07},
abstract = {In diderm bacteria, the Lol pathway canonically mediates the periplasmic transport of lipoproteins from the inner membrane (IM) to the outer membrane (OM) and therefore plays an essential role in bacterial envelope homeostasis. After extrusion of modified lipoproteins from the IM via the LolCDE complex, the periplasmic chaperone LolA carries lipoproteins through the periplasm and transfers them to the OM lipoprotein insertase LolB, itself a lipoprotein with a LolA-like fold. Yet, LolB homologs appear restricted to ψ-proteobacteria and are missing from spirochetes like the tick-borne Lyme disease pathogen Borrelia burgdorferi, suggesting a different hand-off mechanism at the OM. Here, we solved the crystal structure of the B. burgdorferi LolA homolog BB0346 (LolABb) at 1.9 Å resolution. We identified multiple structural deviations in comparative analyses to other solved LolA structures, particularly a unique LolB-like protruding loop domain. LolABb failed to complement an Escherichia coli lolA knockout, even after codon optimization, signal I peptide adaptation, and a C-terminal chimerization which had allowed for complementation with an α-proteobacterial LolA. Analysis of a conditional B. burgdorferi lolA knockout strain indicated that LolABb was essential for growth. Intriguingly, protein localization assays indicated that initial depletion of LolABb led to an emerging mislocalization of both IM and periplasmic OM lipoproteins, but not surface lipoproteins. Together, these findings further support the presence of two separate primary secretion pathways for periplasmic and surface OM lipoproteins in B. burgdorferi and suggest that the distinct structural features of LolABb allow it to function in a unique LolB-deficient lipoprotein sorting system.},
keywords = {NT8},
pubstate = {published},
tppubtype = {article}
}
In diderm bacteria, the Lol pathway canonically mediates the periplasmic transport of lipoproteins from the inner membrane (IM) to the outer membrane (OM) and therefore plays an essential role in bacterial envelope homeostasis. After extrusion of modified lipoproteins from the IM via the LolCDE complex, the periplasmic chaperone LolA carries lipoproteins through the periplasm and transfers them to the OM lipoprotein insertase LolB, itself a lipoprotein with a LolA-like fold. Yet, LolB homologs appear restricted to ψ-proteobacteria and are missing from spirochetes like the tick-borne Lyme disease pathogen Borrelia burgdorferi, suggesting a different hand-off mechanism at the OM. Here, we solved the crystal structure of the B. burgdorferi LolA homolog BB0346 (LolABb) at 1.9 Å resolution. We identified multiple structural deviations in comparative analyses to other solved LolA structures, particularly a unique LolB-like protruding loop domain. LolABb failed to complement an Escherichia coli lolA knockout, even after codon optimization, signal I peptide adaptation, and a C-terminal chimerization which had allowed for complementation with an α-proteobacterial LolA. Analysis of a conditional B. burgdorferi lolA knockout strain indicated that LolABb was essential for growth. Intriguingly, protein localization assays indicated that initial depletion of LolABb led to an emerging mislocalization of both IM and periplasmic OM lipoproteins, but not surface lipoproteins. Together, these findings further support the presence of two separate primary secretion pathways for periplasmic and surface OM lipoproteins in B. burgdorferi and suggest that the distinct structural features of LolABb allow it to function in a unique LolB-deficient lipoprotein sorting system. |
The crystal structure of Acinetobacter baumannii bacterioferritin reveals a heteropolymer of bacterioferritin and ferritin subunits Yao, Huili In: 2024. @article{noKey,
title = {The crystal structure of Acinetobacter baumannii bacterioferritin reveals a heteropolymer of bacterioferritin and ferritin subunits},
author = {Yao, Huili},
url = {https://www.nature.com/articles/s41598-024-69156-2},
doi = {https://doi.org/10.1038/s41598-024-69156-2},
year = {2024},
date = {2024-08-06},
abstract = {Iron storage proteins, e.g., vertebrate ferritin, and the ferritin-like bacterioferritin (Bfr) and bacterial ferritin (Ftn), are spherical, hollow proteins that catalyze the oxidation of Fe2+ at binuclear iron ferroxidase centers (FOC) and store the Fe3+ in their interior, thus protecting cells from unwanted Fe3+/Fe2+ redox cycling and storing iron at concentrations far above the solubility of Fe3+. Vertebrate ferritins are heteropolymers of H and L subunits with only the H subunits having FOC. Bfr and Ftn were thought to coexist in bacteria as homopolymers, but recent evidence indicates these molecules are heteropolymers assembled from Bfr and Ftn subunits. Despite the heteropolymeric nature of vertebrate and bacterial ferritins, structures have been determined only for recombinant proteins constituted by a single subunit type. Herein we report the structure of Acinetobacter baumannii bacterioferritin, the first structural example of a heteropolymeric ferritin or ferritin-like molecule, assembled from completely overlapping Ftn homodimers harboring FOC and Bfr homodimers devoid of FOC but binding heme. The Ftn homodimers function by catalyzing the oxidation of Fe2+ to Fe3+, while the Bfr homodimers bind a cognate ferredoxin (Bfd) which reduces the stored Fe3+ by transferring electrons via the heme, enabling Fe2+ mobilization to the cytosol for incorporation in metabolism.},
keywords = {NT8},
pubstate = {published},
tppubtype = {article}
}
Iron storage proteins, e.g., vertebrate ferritin, and the ferritin-like bacterioferritin (Bfr) and bacterial ferritin (Ftn), are spherical, hollow proteins that catalyze the oxidation of Fe2+ at binuclear iron ferroxidase centers (FOC) and store the Fe3+ in their interior, thus protecting cells from unwanted Fe3+/Fe2+ redox cycling and storing iron at concentrations far above the solubility of Fe3+. Vertebrate ferritins are heteropolymers of H and L subunits with only the H subunits having FOC. Bfr and Ftn were thought to coexist in bacteria as homopolymers, but recent evidence indicates these molecules are heteropolymers assembled from Bfr and Ftn subunits. Despite the heteropolymeric nature of vertebrate and bacterial ferritins, structures have been determined only for recombinant proteins constituted by a single subunit type. Herein we report the structure of Acinetobacter baumannii bacterioferritin, the first structural example of a heteropolymeric ferritin or ferritin-like molecule, assembled from completely overlapping Ftn homodimers harboring FOC and Bfr homodimers devoid of FOC but binding heme. The Ftn homodimers function by catalyzing the oxidation of Fe2+ to Fe3+, while the Bfr homodimers bind a cognate ferredoxin (Bfd) which reduces the stored Fe3+ by transferring electrons via the heme, enabling Fe2+ mobilization to the cytosol for incorporation in metabolism. |
The structure of a NEMO construct engineered for screening reveals novel determinants of inhibition E. Kennedy, Amy In: 2024. @article{noKey,
title = {The structure of a NEMO construct engineered for screening reveals novel determinants of inhibition},
author = {E. Kennedy, Amy},
url = {chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.biorxiv.org/content/10.1101/2024.07.18.604176v1.full.pdf},
doi = {https://doi.org/10.1101/2024.07.18.604176},
year = {2024},
date = {2024-07-22},
abstract = {NEMO is an essential component in the activation of the canonical NFκ B pathway and exerts its function by recruiting the I κ B kinases (IKK) to the IKK complex. Inhibition of the NEMO/IKKs interaction is an attractive therapeutic paradigm for diseases related to NFκ B mis-regulation, but a difficult endeavor because of the extensive protein-protein interface. Here we report the design and characterization of novel engineered constructs of the IKK-binding domain of NEMO, programmed to render this difficult protein domain amenable to NMR and X-ray characterization, while preserving the biological function. ZipNEMO binds IKK β with nanomolar affinity, is amenable to heteronuclear NMR techniques and structure determination by X-ray crystallography. We show that NMR spectra of zipNEMO allow to detect inhibitor binding in solution and resonance assignment. The X-ray structure of zipNEMO highlights a novel ligand binding motif and the adaptability of the binding pocket and inspired the design of new peptide inhibitors.},
keywords = {NT8},
pubstate = {published},
tppubtype = {article}
}
NEMO is an essential component in the activation of the canonical NFκ B pathway and exerts its function by recruiting the I κ B kinases (IKK) to the IKK complex. Inhibition of the NEMO/IKKs interaction is an attractive therapeutic paradigm for diseases related to NFκ B mis-regulation, but a difficult endeavor because of the extensive protein-protein interface. Here we report the design and characterization of novel engineered constructs of the IKK-binding domain of NEMO, programmed to render this difficult protein domain amenable to NMR and X-ray characterization, while preserving the biological function. ZipNEMO binds IKK β with nanomolar affinity, is amenable to heteronuclear NMR techniques and structure determination by X-ray crystallography. We show that NMR spectra of zipNEMO allow to detect inhibitor binding in solution and resonance assignment. The X-ray structure of zipNEMO highlights a novel ligand binding motif and the adaptability of the binding pocket and inspired the design of new peptide inhibitors. |