Douglas, James J. The Implementation and Impact of Chemical High-Throughput Experimentation at AstraZeneca Journal Article In: 2025. @article{noKey,
title = {The Implementation and Impact of Chemical High-Throughput Experimentation at AstraZeneca},
author = {Douglas, James J.},
url = {https://pubs.acs.org/doi/10.1021/acscatal.4c07969},
doi = {https://doi.org/10.1021/acscatal.4c07969},
year = {2025},
date = {2025-03-13},
abstract = {High-throughput experimentation (HTE) is a critical tool in modern pharmaceutical discovery and development. The ability to perform multiple parallel experiments in miniaturized plate-based formats has revolutionized how chemical reactions are optimized. HTE has been especially enabling for catalytic reactions, where the complexity of factors influencing the outcome makes the HTE approach especially suitable. We detail AstraZeneca’s 20-year journey with HTE, from early beginnings to a global community of HTE specialists that are critical to the delivery of our complex portfolio with reduced environmental impact. With an emphasis on catalytic reactions, we provide relevant case study examples from across discovery and development, discuss current technology, data science and workflows, and provide insights into where we see future advances in HTE.},
keywords = {FAST},
pubstate = {published},
tppubtype = {article}
}
High-throughput experimentation (HTE) is a critical tool in modern pharmaceutical discovery and development. The ability to perform multiple parallel experiments in miniaturized plate-based formats has revolutionized how chemical reactions are optimized. HTE has been especially enabling for catalytic reactions, where the complexity of factors influencing the outcome makes the HTE approach especially suitable. We detail AstraZeneca’s 20-year journey with HTE, from early beginnings to a global community of HTE specialists that are critical to the delivery of our complex portfolio with reduced environmental impact. With an emphasis on catalytic reactions, we provide relevant case study examples from across discovery and development, discuss current technology, data science and workflows, and provide insights into where we see future advances in HTE. |
Møller, Tenna A. ActinoMation: a literate programming approach for medium-throughput robotic conjugation of Streptomyces spp. Journal Article In: 2025. @article{noKey,
title = {ActinoMation: a literate programming approach for medium-throughput robotic conjugation of Streptomyces spp.},
author = {Møller, Tenna A.},
url = {https://www.sciencedirect.com/science/article/pii/S2405805X25000389},
doi = {https://doi.org/10.1016/j.synbio.2025.03.005},
year = {2025},
date = {2025-03-11},
abstract = {The genus Streptomyces are valuable producers of antibiotics and other pharmaceutically important bioactive compounds. Advances in molecular engineering tools, such as CRISPR, have provided some access to the metabolic potential of Streptomyces, but efficient genetic engineering of strains is hindered by laborious and slow manual transformation protocols. In this paper, we present a semi-automated medium-throughput workflow for the introduction of recombinant DNA into Streptomyces spp. using the affordable and open-sourced Opentrons (OT-2) robotics platform. To increase the accessibility of the workflow we provide an open-source protocol-creator, ActinoMation. ActinoMation is a literate programming environment using Python in Jupyter Notebook. We validated the method by transforming Streptomyces coelicolor (M1152 and M1146), S. albidoflavus (J1047), and S. venezuelae (DSM40230) with the plasmids pSETGUS and pIJ12551. We demonstrate conjugation efficiencies of 3.33*10-3/0.33% for M1152 with pSETGUS and pIJ12551; 2.96*10-3/0.29%for M1146 with pSETGUS and pIJ12551; 1.21*10-5/0.0012% for J1047 with pSETGUS and 4.70*10-4/0.047% with pIJ12551, and 4.97*10-2/4.97% for DSM40230 with pSETGUS and 6.13*10-2 /6.13% with pIJ12551 with a false positive rate between 8.33% and 54.54%. Automation of the conjugation workflow facilitates a streamlined workflow on a larger scale without any evident loss of conjugation efficiency.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
The genus Streptomyces are valuable producers of antibiotics and other pharmaceutically important bioactive compounds. Advances in molecular engineering tools, such as CRISPR, have provided some access to the metabolic potential of Streptomyces, but efficient genetic engineering of strains is hindered by laborious and slow manual transformation protocols. In this paper, we present a semi-automated medium-throughput workflow for the introduction of recombinant DNA into Streptomyces spp. using the affordable and open-sourced Opentrons (OT-2) robotics platform. To increase the accessibility of the workflow we provide an open-source protocol-creator, ActinoMation. ActinoMation is a literate programming environment using Python in Jupyter Notebook. We validated the method by transforming Streptomyces coelicolor (M1152 and M1146), S. albidoflavus (J1047), and S. venezuelae (DSM40230) with the plasmids pSETGUS and pIJ12551. We demonstrate conjugation efficiencies of 3.33*10-3/0.33% for M1152 with pSETGUS and pIJ12551; 2.96*10-3/0.29%for M1146 with pSETGUS and pIJ12551; 1.21*10-5/0.0012% for J1047 with pSETGUS and 4.70*10-4/0.047% with pIJ12551, and 4.97*10-2/4.97% for DSM40230 with pSETGUS and 6.13*10-2 /6.13% with pIJ12551 with a false positive rate between 8.33% and 54.54%. Automation of the conjugation workflow facilitates a streamlined workflow on a larger scale without any evident loss of conjugation efficiency. |
Alaviuhkola, Juho Discovery of inhibitors for bacterial Arr enzymes ADP-ribosylating and inactivating rifamycin antibiotics Journal Article In: 2025. @article{noKey,
title = {Discovery of inhibitors for bacterial Arr enzymes ADP-ribosylating and inactivating rifamycin antibiotics},
author = {Alaviuhkola, Juho},
url = {https://www.biorxiv.org/content/10.1101/2025.02.20.639278v1.full},
doi = {https://doi.org/10.1101/2025.02.20.639278},
year = {2025},
date = {2025-02-22},
abstract = {ADP-ribosylation is an enzymatic process where an ADP-ribose moiety is transferred from NAD+ to an acceptor molecule. While ADP-ribosylation is well-established as a post-translational modification of proteins, rifamycin antibiotics are its only known small-molecule targets. ADP-ribosylation of rifampicin was first identified in Mycolicibacterium smegmatis, whose Arr enzyme transfers the ADP-ribose moiety to the 23-hydroxy group of rifampicin preventing its interaction with the bacterial RNA polymerase thereby inactivating the antibiotic. Arr homologues are widely spread among bacterial species and present in several pathogenic species often associated with mobile genetic elements. Inhibition of Arr enzymes offers a promising strategy to overcome ADP-ribosylation mediated rifamycin resistance. We developed a high-throughput activity assay, which was applied to screen an in-house library of human ADP-ribosyltransferase-targeted compounds. We identified 15 inhibitors with IC50 values below 5 µM against four Arr enzymes from M. smegmatis, Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Mycobacteroides abscessus. The observed overall selectivity of the hit compounds over the other homologues indicated structural differences between the proteins. We crystallized M. smegmatis and P. aeruginosa Arr enzymes, the former in complex with its most potent hit compound with an IC50 value of 1.3 µM. We observed structural differences in the NAD+ binding pockets of the two Arr homologues explaining the selectivity. Although the Arr inhibitors did not sensitize M. smegmatis to rifampicin in a growth inhibition assay, the structural information and the collection of inhibitors provide a foundation for rational modifications and further development of the compounds.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
ADP-ribosylation is an enzymatic process where an ADP-ribose moiety is transferred from NAD+ to an acceptor molecule. While ADP-ribosylation is well-established as a post-translational modification of proteins, rifamycin antibiotics are its only known small-molecule targets. ADP-ribosylation of rifampicin was first identified in Mycolicibacterium smegmatis, whose Arr enzyme transfers the ADP-ribose moiety to the 23-hydroxy group of rifampicin preventing its interaction with the bacterial RNA polymerase thereby inactivating the antibiotic. Arr homologues are widely spread among bacterial species and present in several pathogenic species often associated with mobile genetic elements. Inhibition of Arr enzymes offers a promising strategy to overcome ADP-ribosylation mediated rifamycin resistance. We developed a high-throughput activity assay, which was applied to screen an in-house library of human ADP-ribosyltransferase-targeted compounds. We identified 15 inhibitors with IC50 values below 5 µM against four Arr enzymes from M. smegmatis, Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Mycobacteroides abscessus. The observed overall selectivity of the hit compounds over the other homologues indicated structural differences between the proteins. We crystallized M. smegmatis and P. aeruginosa Arr enzymes, the former in complex with its most potent hit compound with an IC50 value of 1.3 µM. We observed structural differences in the NAD+ binding pockets of the two Arr homologues explaining the selectivity. Although the Arr inhibitors did not sensitize M. smegmatis to rifampicin in a growth inhibition assay, the structural information and the collection of inhibitors provide a foundation for rational modifications and further development of the compounds. |
Tan, Jeremiah, Bernatsky, Sasha, et al. COVID-19 Breakthrough Infections in Immune-Mediated Inflammatory Diseases: Data from the SUCCEED (Safety and Immunogenicity of COVID-19 Vaccines in Systemic Autoimmune-Mediated Inflammatory Diseases) Study Journal Article In: 2025. @article{noKey,
title = {COVID-19 Breakthrough Infections in Immune-Mediated Inflammatory Diseases: Data from the SUCCEED (Safety and Immunogenicity of COVID-19 Vaccines in Systemic Autoimmune-Mediated Inflammatory Diseases) Study},
author = {Tan, Jeremiah, Bernatsky, Sasha, et al.},
url = {https://www.mdpi.com/2076-393X/13/2/104},
doi = {https://doi.org/10.3390/vaccines13020104},
year = {2025},
date = {2025-01-22},
abstract = {ackground: The Safety and Immunogenicity of COVID-19 Vaccines in Systemic Autoimmune-Mediated Inflammatory Diseases (SUCCEED) study was created to better understand COVID-19 vaccination in immune-mediated inflammatory disease (IMID). Knowing the frequency of COVID-19 breakthrough infections is important, particularly in IMID. Our objective was to assess these events in IMID. Methods: We prospectively studied IMID participants who had received ≥three COVID-19 vaccine doses. Individuals provided saliva samples monthly (September 2022 to August 2023). These were evaluated by polymerase chain reaction (PCR) for SARS-CoV-2. We also assessed antibodies against SARS-CoV-2 (anti-spike, SmT1, receptor binding domain, RBD, and nucleocapsid, NP) based on dried blood spots. Multivariable general estimating equation regression produced odd ratios (OR) for PCR SARS-CoV-2 positivity, related to demographics, immunosuppressives, and antibody levels. Results: Diagnoses included rheumatoid arthritis RA (N = 161, 44% of the total), systemic lupus, psoriatic arthritis, spondylarthritis, vasculitis, systemic sclerosis, and inflammatory bowel disease. Of the 366 participants, most were taking immunosuppressive medication. Of 1266 saliva samples, 56 (5.1%) were positive for SARS-CoV-2 on PCR. Higher anti-SmT1 antibodies were inversely associated with SARS-CoV-2 detection on PCR (adjusted OR 0.66, 95% confidence interval 0.45–0.97). Antibodies to SmT1, RBD, and NP were correlated and thus could not be included in a single model, but when anti-RBD was used in place of anti-SmT1, the results were similar. No other factor (including prior COVID-19 infection) was clearly associated with SARS-CoV-2 detection. Conclusions: This is the first study of SARS-CoV-2 in a large prospective cohort of triple (or more) vaccinated individuals with IMIDs. Anti-SmT1 antibodies appeared to be protective against later SARS-CoV-2 positivity, although recent past infection was not clearly related. This suggests the importance of maintaining robust vaccine-induced immunity through vaccination in IMID.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
ackground: The Safety and Immunogenicity of COVID-19 Vaccines in Systemic Autoimmune-Mediated Inflammatory Diseases (SUCCEED) study was created to better understand COVID-19 vaccination in immune-mediated inflammatory disease (IMID). Knowing the frequency of COVID-19 breakthrough infections is important, particularly in IMID. Our objective was to assess these events in IMID. Methods: We prospectively studied IMID participants who had received ≥three COVID-19 vaccine doses. Individuals provided saliva samples monthly (September 2022 to August 2023). These were evaluated by polymerase chain reaction (PCR) for SARS-CoV-2. We also assessed antibodies against SARS-CoV-2 (anti-spike, SmT1, receptor binding domain, RBD, and nucleocapsid, NP) based on dried blood spots. Multivariable general estimating equation regression produced odd ratios (OR) for PCR SARS-CoV-2 positivity, related to demographics, immunosuppressives, and antibody levels. Results: Diagnoses included rheumatoid arthritis RA (N = 161, 44% of the total), systemic lupus, psoriatic arthritis, spondylarthritis, vasculitis, systemic sclerosis, and inflammatory bowel disease. Of the 366 participants, most were taking immunosuppressive medication. Of 1266 saliva samples, 56 (5.1%) were positive for SARS-CoV-2 on PCR. Higher anti-SmT1 antibodies were inversely associated with SARS-CoV-2 detection on PCR (adjusted OR 0.66, 95% confidence interval 0.45–0.97). Antibodies to SmT1, RBD, and NP were correlated and thus could not be included in a single model, but when anti-RBD was used in place of anti-SmT1, the results were similar. No other factor (including prior COVID-19 infection) was clearly associated with SARS-CoV-2 detection. Conclusions: This is the first study of SARS-CoV-2 in a large prospective cohort of triple (or more) vaccinated individuals with IMIDs. Anti-SmT1 antibodies appeared to be protective against later SARS-CoV-2 positivity, although recent past infection was not clearly related. This suggests the importance of maintaining robust vaccine-induced immunity through vaccination in IMID. |
Wright, Gerard A microbial natural product fractionation library screen with HRMS/MS dereplication identifies new lipopeptaibiotics against Candida auris Journal Article In: 2025. @article{noKey,
title = {A microbial natural product fractionation library screen with HRMS/MS dereplication identifies new lipopeptaibiotics against Candida auris},
author = {Wright, Gerard},
url = {https://www.researchsquare.com/article/rs-5802877/v1},
doi = {https://doi.org/10.21203/rs.3.rs-5802877/v1},
year = {2025},
date = {2025-01-16},
abstract = {The rise of drug-resistant fungal pathogens, including Candida auris, highlights the urgent need for novel antifungal therapies. We developed a cost-effective platform combining microbial extract prefractionation with rapid MS/MS-bioinformatics-based dereplication to efficiently prioritize new antifungal scaffolds. Screening C. auris and C. albicans revealed novel lipopeptaibiotics, coniotins, from Coniochaeta hoffmannii WAC11161, which were undetectable in crude extracts. Coniotins exhibited potent activity against critical fungal pathogens on the WHO Fungal Priority Pathogens List, including C. albicans, C. neoformans, multidrug-resistant C. auris, and Aspergillus fumigatus, with high selectivity and low resistance potential. Coniotin A targets β-glucan, compromising fungal cell wall integrity, remodelling, and sensitizing C. auris to caspofungin. Identification of a PKS-NRPS biosynthetic gene cluster further enables the discovery of related clusters encoding potential novel lipopeptaibiotics. This study demonstrates the power of natural product prefractionation in uncovering bioactive scaffolds and introduces coniotins as promising candidates for combating multidrug-resistant fungal pathogens.},
keywords = {TEMPEST},
pubstate = {published},
tppubtype = {article}
}
The rise of drug-resistant fungal pathogens, including Candida auris, highlights the urgent need for novel antifungal therapies. We developed a cost-effective platform combining microbial extract prefractionation with rapid MS/MS-bioinformatics-based dereplication to efficiently prioritize new antifungal scaffolds. Screening C. auris and C. albicans revealed novel lipopeptaibiotics, coniotins, from Coniochaeta hoffmannii WAC11161, which were undetectable in crude extracts. Coniotins exhibited potent activity against critical fungal pathogens on the WHO Fungal Priority Pathogens List, including C. albicans, C. neoformans, multidrug-resistant C. auris, and Aspergillus fumigatus, with high selectivity and low resistance potential. Coniotin A targets β-glucan, compromising fungal cell wall integrity, remodelling, and sensitizing C. auris to caspofungin. Identification of a PKS-NRPS biosynthetic gene cluster further enables the discovery of related clusters encoding potential novel lipopeptaibiotics. This study demonstrates the power of natural product prefractionation in uncovering bioactive scaffolds and introduces coniotins as promising candidates for combating multidrug-resistant fungal pathogens. |
Kovar, Peter Development of a sensitive high-throughput enzymatic assay capable of measuring sub-nanomolar inhibitors of SARS-CoV2 Mpro Journal Article In: 2024. @article{noKey,
title = {Development of a sensitive high-throughput enzymatic assay capable of measuring sub-nanomolar inhibitors of SARS-CoV2 Mpro},
author = {Kovar, Peter},
url = {https://www.sciencedirect.com/science/article/pii/S2472555224000418},
doi = {https://doi.org/10.1016/j.slasd.2024.100179},
year = {2024},
date = {2024-09-01},
abstract = {The SARS-CoV-2 main protease (Mpro) is essential for viral replication because it is responsible for the processing of most of the non-structural proteins encoded by the virus. Inhibition of Mpro prevents viral replication and therefore constitutes an attractive antiviral strategy. We set out to develop a high-throughput Mpro enzymatic activity assay using fluorescently labeled peptide substrates. A library of fluorogenic substrates of various lengths, sequences and dye/quencher positions was prepared and tested against full length SARS-CoV-2 Mpro enzyme for optimal activity. The addition of buffers containing strongly hydrated kosmotropic anion salts, such as citrate, from the Hofmeister series significantly boosted the enzyme activity and enhanced the assay detection limit, enabling the ranking of sub-nanomolar inhibitors without relying on the low-throughput Morrison equation method. By comparing cooperativity in citrate or non-citrate buffer while titrating the Mpro enzyme concentration, we found full positive cooperativity of Mpro with citrate buffer at less than one nanomolar (nM), but at a much higher enzyme concentration (∼320 nM) with non-citrate buffer. In addition, using a tight binding Mpro inhibitor, we confirmed there was only one active catalytical site in each Mpro monomer. Since cooperativity requires at least two binding sites, we hypothesized that citrate facilitates dimerization of Mpro at sub-nanomolar concentration as one of the mechanisms enhances Mpro catalytic efficiency. This assay has been used in high-throughput screening and structure activity relationship (SAR) studies to support medicinal chemistry efforts. IC50 values determined in this assay correlates well with EC50 values generated by a SARS-CoV-2 antiviral assay after adjusted for cell penetration.},
keywords = {TEMPEST},
pubstate = {published},
tppubtype = {article}
}
The SARS-CoV-2 main protease (Mpro) is essential for viral replication because it is responsible for the processing of most of the non-structural proteins encoded by the virus. Inhibition of Mpro prevents viral replication and therefore constitutes an attractive antiviral strategy. We set out to develop a high-throughput Mpro enzymatic activity assay using fluorescently labeled peptide substrates. A library of fluorogenic substrates of various lengths, sequences and dye/quencher positions was prepared and tested against full length SARS-CoV-2 Mpro enzyme for optimal activity. The addition of buffers containing strongly hydrated kosmotropic anion salts, such as citrate, from the Hofmeister series significantly boosted the enzyme activity and enhanced the assay detection limit, enabling the ranking of sub-nanomolar inhibitors without relying on the low-throughput Morrison equation method. By comparing cooperativity in citrate or non-citrate buffer while titrating the Mpro enzyme concentration, we found full positive cooperativity of Mpro with citrate buffer at less than one nanomolar (nM), but at a much higher enzyme concentration (∼320 nM) with non-citrate buffer. In addition, using a tight binding Mpro inhibitor, we confirmed there was only one active catalytical site in each Mpro monomer. Since cooperativity requires at least two binding sites, we hypothesized that citrate facilitates dimerization of Mpro at sub-nanomolar concentration as one of the mechanisms enhances Mpro catalytic efficiency. This assay has been used in high-throughput screening and structure activity relationship (SAR) studies to support medicinal chemistry efforts. IC50 values determined in this assay correlates well with EC50 values generated by a SARS-CoV-2 antiviral assay after adjusted for cell penetration. |
Zukas, Kieran Rapid high-throughput method for investigating physiological regulation of neutrophil extracellular trap formation Journal Article In: 2024. @article{noKey,
title = {Rapid high-throughput method for investigating physiological regulation of neutrophil extracellular trap formation},
author = {Zukas, Kieran},
url = {https://www.sciencedirect.com/science/article/pii/S1538783624003209},
doi = {https://doi.org/10.1016/j.jtha.2024.05.028},
year = {2024},
date = {2024-06-10},
abstract = {Background
Neutrophils, the most abundant white blood cells in humans, play pivotal roles in innate immunity, rapidly migrating to sites of infection and inflammation to phagocytose, neutralize, and eliminate invading pathogens. Neutrophil extracellular trap (NET) formation is increasingly recognized as an essential rapid innate immune response, but when dysregulated, it contributes to pathogenesis of sepsis and immunothrombotic disease.
Objectives
Current NETosis models are limited, routinely employing nonphysiological triggers that can bypass natural NET regulatory pathways. Models utilizing isolated neutrophils and immortalized cell lines do not reflect the complex biology underlying neutrophil activation and NETosis that occurs in whole blood. To our knowledge, we report the first human ex vivo model utilizing naturally occurring molecules to induce NETosis in whole blood. This approach could be used for drug screening and, importantly, inadvertent activators of NETosis.
Methods
Here we describe a novel, high-throughput ex vivo whole blood–induced NETosis model using combinatorial pooling of native NETosis-inducing factors in a more biologically relevant Synthetic-Sepsis model.
Results
We found different combinations of factors evoked distinct neutrophil responses in the rate of NET generation and/or magnitude of NETosis. Despite interdonor variability, similar sets of proinflammatory molecules induced consistent responses across donors. We found that at least 3 biological triggers were necessary to induce NETosis in our system including either tumor necrosis factor-α or lymphotoxin-α.
Conclusion
These findings emphasize the importance of investigating neutrophil physiology in a biologically relevant context to enable a better understanding of disease pathology, risk factors, and therapeutic targets, potentially providing novel strategies for disease intervention and treatment.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
Background
Neutrophils, the most abundant white blood cells in humans, play pivotal roles in innate immunity, rapidly migrating to sites of infection and inflammation to phagocytose, neutralize, and eliminate invading pathogens. Neutrophil extracellular trap (NET) formation is increasingly recognized as an essential rapid innate immune response, but when dysregulated, it contributes to pathogenesis of sepsis and immunothrombotic disease.
Objectives
Current NETosis models are limited, routinely employing nonphysiological triggers that can bypass natural NET regulatory pathways. Models utilizing isolated neutrophils and immortalized cell lines do not reflect the complex biology underlying neutrophil activation and NETosis that occurs in whole blood. To our knowledge, we report the first human ex vivo model utilizing naturally occurring molecules to induce NETosis in whole blood. This approach could be used for drug screening and, importantly, inadvertent activators of NETosis.
Methods
Here we describe a novel, high-throughput ex vivo whole blood–induced NETosis model using combinatorial pooling of native NETosis-inducing factors in a more biologically relevant Synthetic-Sepsis model.
Results
We found different combinations of factors evoked distinct neutrophil responses in the rate of NET generation and/or magnitude of NETosis. Despite interdonor variability, similar sets of proinflammatory molecules induced consistent responses across donors. We found that at least 3 biological triggers were necessary to induce NETosis in our system including either tumor necrosis factor-α or lymphotoxin-α.
Conclusion
These findings emphasize the importance of investigating neutrophil physiology in a biologically relevant context to enable a better understanding of disease pathology, risk factors, and therapeutic targets, potentially providing novel strategies for disease intervention and treatment. |
Tan, Tao Protocol for generation of and high-throughput drug testing with patient-derived colorectal cancer organoids Journal Article In: 2024. @article{noKey,
title = {Protocol for generation of and high-throughput drug testing with patient-derived colorectal cancer organoids},
author = {Tan, Tao},
url = {https://www.sciencedirect.com/science/article/pii/S2666166724002557},
doi = {https://doi.org/10.1016/j.xpro.2024.103090},
year = {2024},
date = {2024-05-28},
abstract = {Drug sensitivity testing of patient-derived tumor organoids (PDTOs) is a promising tool for personalizing cancer treatment. Here, we present a protocol for generation of and high-throughput drug testing with PDTOs. We describe detailed steps for PDTO establishment from colorectal cancer tissues, preparation of PDTOs for high-throughput drug testing, and quantification of drug testing results using image analysis. This protocol provides a standardized workflow for PDTO testing of standard-of-care therapies, along with exploring the activity of new agents, for translational research.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
Drug sensitivity testing of patient-derived tumor organoids (PDTOs) is a promising tool for personalizing cancer treatment. Here, we present a protocol for generation of and high-throughput drug testing with PDTOs. We describe detailed steps for PDTO establishment from colorectal cancer tissues, preparation of PDTOs for high-throughput drug testing, and quantification of drug testing results using image analysis. This protocol provides a standardized workflow for PDTO testing of standard-of-care therapies, along with exploring the activity of new agents, for translational research. |
Steinhauser, Sebastian The transcription factor ZNF469 regulates collagen production in liver fibrosis Journal Article In: 2024. @article{noKey,
title = {The transcription factor ZNF469 regulates collagen production in liver fibrosis},
author = {Steinhauser, Sebastian},
url = {https://www.biorxiv.org/content/10.1101/2024.04.25.591188v1},
doi = {https://doi.org/10.1101/2024.04.25.591188},
year = {2024},
date = {2024-04-25},
abstract = {Non-alcoholic fatty liver disease (NAFLD) - characterized by excess accumulation of fat in the liver - now affects one third of the world’s population. As NAFLD progresses, extracellular matrix components including collagen accumulate in the liver causing tissue fibrosis, a major determinant of disease severity and mortality. To identify transcriptional regulators of fibrosis, we computationally inferred the activity of transcription factors (TFs) relevant to fibrosis by profiling the matched transcriptomes and epigenomes of 108 human liver biopsies from a deeply-characterized cohort of patients spanning the full histopathologic spectrum of NAFLD. CRISPR-based genetic knockout of the top 100 TFs identified ZNF469 as a regulator of collagen expression in primary human hepatic stellate cells (HSCs). Gain- and loss-of-function studies established that ZNF469 regulates collagen genes and genes involved in matrix homeostasis through direct binding to gene bodies and regulatory elements. By integrating multiomic large-scale profiling of human biopsies with extensive experimental validation we demonstrate that ZNF469 is a transcriptional regulator of collagen in HSCs. Overall, these data nominate ZNF469 as a previously unrecognized determinant of NAFLD-associated liver fibrosis.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
Non-alcoholic fatty liver disease (NAFLD) - characterized by excess accumulation of fat in the liver - now affects one third of the world’s population. As NAFLD progresses, extracellular matrix components including collagen accumulate in the liver causing tissue fibrosis, a major determinant of disease severity and mortality. To identify transcriptional regulators of fibrosis, we computationally inferred the activity of transcription factors (TFs) relevant to fibrosis by profiling the matched transcriptomes and epigenomes of 108 human liver biopsies from a deeply-characterized cohort of patients spanning the full histopathologic spectrum of NAFLD. CRISPR-based genetic knockout of the top 100 TFs identified ZNF469 as a regulator of collagen expression in primary human hepatic stellate cells (HSCs). Gain- and loss-of-function studies established that ZNF469 regulates collagen genes and genes involved in matrix homeostasis through direct binding to gene bodies and regulatory elements. By integrating multiomic large-scale profiling of human biopsies with extensive experimental validation we demonstrate that ZNF469 is a transcriptional regulator of collagen in HSCs. Overall, these data nominate ZNF469 as a previously unrecognized determinant of NAFLD-associated liver fibrosis. |
Lamond, Angus Iain Cell analysis Journal Article In: 2024. @article{noKey,
title = {Cell analysis},
author = {Lamond, Angus Iain},
url = {https://patents.google.com/patent/US20240125770A1/en},
doi = {US20240125770A1},
year = {2024},
date = {2024-04-18},
abstract = {Methods of studying eukaryotic cell responses to a perturbation, or of stratifying eukaryotic cells or cell lines into one or more subgroups are described. The methods involve perturbing a library of cells or cell lines in the same manner, and observing how the cells respond to the same perturbation. The observation may be via a high throughput screening method, for example, cell painting; and the perturbation may be, for example, exposure to a therapeutic agent.The methods may be used for grouping cells or cell lines that respond similarly to a given therapeutic agent, which may be useful for identifying patient groups and selecting appropriate treatments.},
keywords = {TEMPEST},
pubstate = {published},
tppubtype = {article}
}
Methods of studying eukaryotic cell responses to a perturbation, or of stratifying eukaryotic cells or cell lines into one or more subgroups are described. The methods involve perturbing a library of cells or cell lines in the same manner, and observing how the cells respond to the same perturbation. The observation may be via a high throughput screening method, for example, cell painting; and the perturbation may be, for example, exposure to a therapeutic agent.The methods may be used for grouping cells or cell lines that respond similarly to a given therapeutic agent, which may be useful for identifying patient groups and selecting appropriate treatments. |
Cieślak, Marcin Machine learning accelerates pharmacophore-based virtual screening of MAO inhibitors Journal Article In: 2024. @article{noKey,
title = {Machine learning accelerates pharmacophore-based virtual screening of MAO inhibitors},
author = {Cieślak, Marcin},
url = {https://www.nature.com/articles/s41598-024-58122-7},
doi = {https://doi.org/10.1038/s41598-024-58122-7},
year = {2024},
date = {2024-04-08},
abstract = {Nowadays, an efficient and robust virtual screening procedure is crucial in the drug discovery process, especially when performed on large and chemically diverse databases. Virtual screening methods, like molecular docking and classic QSAR models, are limited in their ability to handle vast numbers of compounds and to learn from scarce data, respectively. In this study, we introduce a universal methodology that uses a machine learning-based approach to predict docking scores without the need for time-consuming molecular docking procedures. The developed protocol yielded 1000 times faster binding energy predictions than classical docking-based screening. The proposed predictive model learns from docking results, allowing users to choose their preferred docking software without relying on insufficient and incoherent experimental activity data. The methodology described employs multiple types of molecular fingerprints and descriptors to construct an ensemble model that further reduces prediction errors and is capable of delivering highly precise docking score values for monoamine oxidase ligands, enabling faster identification of promising compounds. An extensive pharmacophore-constrained screening of the ZINC database resulted in a selection of 24 compounds that were synthesized and evaluated for their biological activity. A preliminary screen discovered weak inhibitors of MAO-A with a percentage efficiency index close to a known drug at the lowest tested concentration. The approach presented here can be successfully applied to other biological targets as target-specific knowledge is not incorporated at the screening phase.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
Nowadays, an efficient and robust virtual screening procedure is crucial in the drug discovery process, especially when performed on large and chemically diverse databases. Virtual screening methods, like molecular docking and classic QSAR models, are limited in their ability to handle vast numbers of compounds and to learn from scarce data, respectively. In this study, we introduce a universal methodology that uses a machine learning-based approach to predict docking scores without the need for time-consuming molecular docking procedures. The developed protocol yielded 1000 times faster binding energy predictions than classical docking-based screening. The proposed predictive model learns from docking results, allowing users to choose their preferred docking software without relying on insufficient and incoherent experimental activity data. The methodology described employs multiple types of molecular fingerprints and descriptors to construct an ensemble model that further reduces prediction errors and is capable of delivering highly precise docking score values for monoamine oxidase ligands, enabling faster identification of promising compounds. An extensive pharmacophore-constrained screening of the ZINC database resulted in a selection of 24 compounds that were synthesized and evaluated for their biological activity. A preliminary screen discovered weak inhibitors of MAO-A with a percentage efficiency index close to a known drug at the lowest tested concentration. The approach presented here can be successfully applied to other biological targets as target-specific knowledge is not incorporated at the screening phase. |
Visvanathan, Ramya A novel micellular fluorogenic substrate for quantitating the activity of 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma (PLCγ) enzymes Journal Article In: 2024. @article{noKey,
title = {A novel micellular fluorogenic substrate for quantitating the activity of 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma (PLCγ) enzymes},
author = {Visvanathan, Ramya},
url = {https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299541},
doi = {https://doi.org/10.1371/journal.pone.0299541},
year = {2024},
date = {2024-03-29},
abstract = {The activities of the phospholipase C gamma (PLCγ) 1 and 2 enzymes are essential for numerous cellular processes. Unsurprisingly, dysregulation of PLCγ1 or PLCγ2 activity is associated with multiple maladies including immune disorders, cancers, and neurodegenerative diseases. Therefore, the modulation of either of these two enzymes has been suggested as a therapeutic strategy to combat these diseases. To aid in the discovery of PLCγ family enzyme modulators that could be developed into therapeutic agents, we have synthesized a high-throughput screening-amenable micellular fluorogenic substrate called C16CF3-coumarin. Herein, the ability of PLCγ1 and PLCγ2 to enzymatically process C16CF3-coumarin was confirmed, the micellular assay conditions were optimized, and the kinetics of the reaction were determined. A proof-of-principle pilot screen of the Library of Pharmacologically Active Compounds 1280 (LOPAC1280) was performed. This new substrate allows for an additional screening methodology to identify modulators of the PLCγ family of enzymes.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
The activities of the phospholipase C gamma (PLCγ) 1 and 2 enzymes are essential for numerous cellular processes. Unsurprisingly, dysregulation of PLCγ1 or PLCγ2 activity is associated with multiple maladies including immune disorders, cancers, and neurodegenerative diseases. Therefore, the modulation of either of these two enzymes has been suggested as a therapeutic strategy to combat these diseases. To aid in the discovery of PLCγ family enzyme modulators that could be developed into therapeutic agents, we have synthesized a high-throughput screening-amenable micellular fluorogenic substrate called C16CF3-coumarin. Herein, the ability of PLCγ1 and PLCγ2 to enzymatically process C16CF3-coumarin was confirmed, the micellular assay conditions were optimized, and the kinetics of the reaction were determined. A proof-of-principle pilot screen of the Library of Pharmacologically Active Compounds 1280 (LOPAC1280) was performed. This new substrate allows for an additional screening methodology to identify modulators of the PLCγ family of enzymes. |
Dufresne, Karine Discovery of an anti-virulence compound that targets the Staphylococcus aureus SaeRS two-component system to inhibit toxic shock syndrome toxin 1 (TSST-1) production Journal Article In: 2024. @article{noKey,
title = {Discovery of an anti-virulence compound that targets the Staphylococcus aureus SaeRS two-component system to inhibit toxic shock syndrome toxin 1 (TSST-1) production},
author = {Dufresne, Karine},
url = {https://www.biorxiv.org/content/10.1101/2024.02.27.582338v1},
doi = {https://doi.org/10.1101/2024.02.27.582338},
year = {2024},
date = {2024-02-27},
abstract = {Menstrual toxic shock syndrome (mTSS) is a rare but severe disorder associated with the use of menstrual products such as high-absorbency tampons and is caused by Staphylococcus aureus strains that produce the toxic shock syndrome toxin-1 (TSST-1) superantigen. Herein, we screened a library of 3920 small bioactive molecules for the ability to inhibit transcription of the TSST-1 gene without inhibiting growth of S. aureus. The dominant positive regulator of TSST-1 is the SaeRS two-component system (TCS), and we identified phenazopyridine hydrochloride (PP-HCl) that repressed production of TSST-1 by inhibiting the kinase function of SaeS. PP-HCl competed with ATP for binding of the kinase SaeS leading to decreased phosphorylation of SaeR and reduced expression of TSST-1 as well as several other secreted virulence factors known to be regulated by SaeRS. PP-HCl targets virulence of S. aureus, but it also decreases the impact of TSST-1 on human lymphocytes without affecting the healthy vaginal microbiota. Our findings demonstrate the promising potential of PP-HCl as a therapeutic strategy against mTSS.},
keywords = {TEMPEST},
pubstate = {published},
tppubtype = {article}
}
Menstrual toxic shock syndrome (mTSS) is a rare but severe disorder associated with the use of menstrual products such as high-absorbency tampons and is caused by Staphylococcus aureus strains that produce the toxic shock syndrome toxin-1 (TSST-1) superantigen. Herein, we screened a library of 3920 small bioactive molecules for the ability to inhibit transcription of the TSST-1 gene without inhibiting growth of S. aureus. The dominant positive regulator of TSST-1 is the SaeRS two-component system (TCS), and we identified phenazopyridine hydrochloride (PP-HCl) that repressed production of TSST-1 by inhibiting the kinase function of SaeS. PP-HCl competed with ATP for binding of the kinase SaeS leading to decreased phosphorylation of SaeR and reduced expression of TSST-1 as well as several other secreted virulence factors known to be regulated by SaeRS. PP-HCl targets virulence of S. aureus, but it also decreases the impact of TSST-1 on human lymphocytes without affecting the healthy vaginal microbiota. Our findings demonstrate the promising potential of PP-HCl as a therapeutic strategy against mTSS. |
Dhakar, Saurabh S. High-throughput screening assay for PARP-HPF1 interaction inhibitors to affect DNA damage repair Journal Article In: 2024. @article{noKey,
title = {High-throughput screening assay for PARP-HPF1 interaction inhibitors to affect DNA damage repair},
author = {Dhakar, Saurabh S.},
url = {https://www.nature.com/articles/s41598-024-54123-8},
doi = {https://doi.org/10.1038/s41598-024-54123-8},
year = {2024},
date = {2024-02-16},
abstract = {ADP-ribosyltransferases PARP1 and PARP2 play a major role in DNA repair mechanism by detecting the DNA damage and inducing poly-ADP-ribosylation dependent chromatin relaxation and recruitment of repair proteins. Catalytic PARP inhibitors are used as anticancer drugs especially in the case of tumors arising from sensitizing mutations. Recently, a study showed that Histone PARylation Factor (HPF1) forms a joint active site with PARP1/2. The interaction of HPF1 with PARP1/2 alters the modification site from Aspartate/Glutamate to Serine, which has been shown to be a key ADP-ribosylation event in the context of DNA damage. Therefore, disruption of PARP1/2-HPF1 interaction could be an alternative strategy for drug development to block the PARP1/2 activity. In this study, we describe a FRET based high-throughput screening assay to screen inhibitor libraries against PARP-HPF1 interaction. We optimized the conditions for FRET signal and verified the interaction by competing the FRET pair in multiple ways. The assay is robust and easy to automate. Validatory screening showed the robust performance of the assay, and we discovered two compounds Dimethylacrylshikonin and Alkannin, with µM inhibition potency against PARP1/2-HPF1 interaction. The assay will facilitate the discovery of inhibitors against HPF1-PARP1/2 complex and to develop potentially new effective anticancer agents.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
ADP-ribosyltransferases PARP1 and PARP2 play a major role in DNA repair mechanism by detecting the DNA damage and inducing poly-ADP-ribosylation dependent chromatin relaxation and recruitment of repair proteins. Catalytic PARP inhibitors are used as anticancer drugs especially in the case of tumors arising from sensitizing mutations. Recently, a study showed that Histone PARylation Factor (HPF1) forms a joint active site with PARP1/2. The interaction of HPF1 with PARP1/2 alters the modification site from Aspartate/Glutamate to Serine, which has been shown to be a key ADP-ribosylation event in the context of DNA damage. Therefore, disruption of PARP1/2-HPF1 interaction could be an alternative strategy for drug development to block the PARP1/2 activity. In this study, we describe a FRET based high-throughput screening assay to screen inhibitor libraries against PARP-HPF1 interaction. We optimized the conditions for FRET signal and verified the interaction by competing the FRET pair in multiple ways. The assay is robust and easy to automate. Validatory screening showed the robust performance of the assay, and we discovered two compounds Dimethylacrylshikonin and Alkannin, with µM inhibition potency against PARP1/2-HPF1 interaction. The assay will facilitate the discovery of inhibitors against HPF1-PARP1/2 complex and to develop potentially new effective anticancer agents. |
Wilkinson, Joshua C. High-Throughput GPCRome Screen of Pollutants Reveals the Activity of Polychlorinated Biphenyls at Melatonin and Sphingosine-1-phosphate Receptors Journal Article In: 2024. @article{noKey,
title = {High-Throughput GPCRome Screen of Pollutants Reveals the Activity of Polychlorinated Biphenyls at Melatonin and Sphingosine-1-phosphate Receptors},
author = {Wilkinson, Joshua C.},
url = {https://pubs.acs.org/doi/full/10.1021/acs.chemrestox.3c00388},
doi = {https://doi.org/10.1021/acs.chemrestox.3c00388},
year = {2024},
date = {2024-01-31},
abstract = {Exposure to environmental pollutants is linked to numerous toxic outcomes, warranting concern about the effect of pollutants on human health. To assess the threat of pollutant exposure, it is essential to understand their biological activity. Unfortunately, gaps remain for many pollutants’ specific biological activity and molecular targets. A superfamily of signaling proteins, G-protein-coupled receptors (GPCRs), has been shown as potential targets for pollutant activity. However, research investigating the pollutant activity at the GPCRome is scarce. This work explores pollutant activity across a library of human GPCRs by leveraging modern high-throughput screening techniques devised for drug discovery and pharmacology. We designed and implemented a pilot screen of eight pollutants at 314 human GPCRs and discovered specific polychlorinated biphenyl (PCB) activity at sphingosine-1-phosphate and melatonin receptors. The method utilizes open-source resources available to academic and governmental institutions to enable future campaigns that screen large numbers of pollutants. Thus, we present a novel high-throughput approach to assess the biological activity and specific targets of pollutants.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
Exposure to environmental pollutants is linked to numerous toxic outcomes, warranting concern about the effect of pollutants on human health. To assess the threat of pollutant exposure, it is essential to understand their biological activity. Unfortunately, gaps remain for many pollutants’ specific biological activity and molecular targets. A superfamily of signaling proteins, G-protein-coupled receptors (GPCRs), has been shown as potential targets for pollutant activity. However, research investigating the pollutant activity at the GPCRome is scarce. This work explores pollutant activity across a library of human GPCRs by leveraging modern high-throughput screening techniques devised for drug discovery and pharmacology. We designed and implemented a pilot screen of eight pollutants at 314 human GPCRs and discovered specific polychlorinated biphenyl (PCB) activity at sphingosine-1-phosphate and melatonin receptors. The method utilizes open-source resources available to academic and governmental institutions to enable future campaigns that screen large numbers of pollutants. Thus, we present a novel high-throughput approach to assess the biological activity and specific targets of pollutants. |
Brocklehurst, Cara E. MicroCycle: An Integrated and Automated Platform to Accelerate Drug Discovery Journal Article In: 2024. @article{noKey,
title = {MicroCycle: An Integrated and Automated Platform to Accelerate Drug Discovery},
author = {Brocklehurst, Cara E.},
url = {https://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.3c02029},
doi = {https://doi.org/10.1021/acs.jmedchem.3c02029},
year = {2024},
date = {2024-01-25},
abstract = {We herein describe the development and application of a modular technology platform which incorporates recent advances in plate-based microscale chemistry, automated purification, in situ quantification, and robotic liquid handling to enable rapid access to high-quality chemical matter already formatted for assays. In using microscale chemistry and thus consuming minimal chemical matter, the platform is not only efficient but also follows green chemistry principles. By reorienting existing high-throughput assay technology, the platform can generate a full package of relevant data on each set of compounds in every learning cycle. The multiparameter exploration of chemical and property space is hereby driven by active learning models. The enhanced compound optimization process is generating knowledge for drug discovery projects in a time frame never before possible.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
We herein describe the development and application of a modular technology platform which incorporates recent advances in plate-based microscale chemistry, automated purification, in situ quantification, and robotic liquid handling to enable rapid access to high-quality chemical matter already formatted for assays. In using microscale chemistry and thus consuming minimal chemical matter, the platform is not only efficient but also follows green chemistry principles. By reorienting existing high-throughput assay technology, the platform can generate a full package of relevant data on each set of compounds in every learning cycle. The multiparameter exploration of chemical and property space is hereby driven by active learning models. The enhanced compound optimization process is generating knowledge for drug discovery projects in a time frame never before possible. |
Sedlak, David Unique and Common Agonists Activate the Insect Juvenile Hormone Receptor and the Human AHR Journal Article In: 2024. @article{noKey,
title = {Unique and Common Agonists Activate the Insect Juvenile Hormone Receptor and the Human AHR},
author = {Sedlak, David},
url = {https://www.biorxiv.org/content/10.1101/2024.01.03.574093v1},
doi = {https://doi.org/10.1101/2024.01.03.574093},
year = {2024},
date = {2024-01-04},
abstract = {Transcription factors of the bHLH-PAS family play vital roles in animal development, physiology, and disease. Two members of the family require binding of low-molecular weight ligands for their activity: the vertebrate aryl hydrocarbon receptor (AHR) and the insect juvenile hormone receptor (JHR). In the fly Drosophila melanogaster, the paralogous proteins GCE and MET constitute the ligand-binding component of JHR complexes. Whilst GCE/MET and AHR are phylogenetically heterologous, their mode of action is similar. JHR is targeted by several synthetic agonists that serve as insecticides disrupting the insect endocrine system. AHR is an important regulator of human endocrine homeostasis and it responds to environmental pollutants and endocrine disruptors. Whether AHR signaling is affected by compounds that can activate JHR has not been reported. To address this question, we screened a chemical library of 50,000 compounds to identify 93 novel JHR agonists in a reporter system based on Drosophila cells. Of these compounds, 26% modulated AHR signaling in an analogous reporter assay in a human cell line, indicating a significant overlap in the agonist repertoires of the two receptors. To explore the structural features of agonist-dependent activation of JHR and AHR, we compared the ligand-binding cavities and their interactions with selective and common ligands of AHR and GCE. Molecular dynamics modeling revealed ligand-specific as well as conserved side chains within the respective cavities. Significance of predicted interactions was supported through site-directed mutagenesis. The results have indicated that synthetic insect juvenile hormone agonists might interfere with AHR signaling in human cells.},
keywords = {TEMPEST},
pubstate = {published},
tppubtype = {article}
}
Transcription factors of the bHLH-PAS family play vital roles in animal development, physiology, and disease. Two members of the family require binding of low-molecular weight ligands for their activity: the vertebrate aryl hydrocarbon receptor (AHR) and the insect juvenile hormone receptor (JHR). In the fly Drosophila melanogaster, the paralogous proteins GCE and MET constitute the ligand-binding component of JHR complexes. Whilst GCE/MET and AHR are phylogenetically heterologous, their mode of action is similar. JHR is targeted by several synthetic agonists that serve as insecticides disrupting the insect endocrine system. AHR is an important regulator of human endocrine homeostasis and it responds to environmental pollutants and endocrine disruptors. Whether AHR signaling is affected by compounds that can activate JHR has not been reported. To address this question, we screened a chemical library of 50,000 compounds to identify 93 novel JHR agonists in a reporter system based on Drosophila cells. Of these compounds, 26% modulated AHR signaling in an analogous reporter assay in a human cell line, indicating a significant overlap in the agonist repertoires of the two receptors. To explore the structural features of agonist-dependent activation of JHR and AHR, we compared the ligand-binding cavities and their interactions with selective and common ligands of AHR and GCE. Molecular dynamics modeling revealed ligand-specific as well as conserved side chains within the respective cavities. Significance of predicted interactions was supported through site-directed mutagenesis. The results have indicated that synthetic insect juvenile hormone agonists might interfere with AHR signaling in human cells. |
Tan, Tao, Mouradov, Dmitri, Sieber, Oliver Unified framework for patient-derived, tumor-organoid-based predictive testing of standard-of-care therapies in metastatic colorectal cancer Journal Article In: 2023. @article{noKey,
title = {Unified framework for patient-derived, tumor-organoid-based predictive testing of standard-of-care therapies in metastatic colorectal cancer},
author = {Tan, Tao, Mouradov, Dmitri, Sieber, Oliver},
url = {https://www.sciencedirect.com/science/article/pii/S2666379123005529},
doi = {https://doi.org/10.1016/j.xcrm.2023.101335},
year = {2023},
date = {2023-12-19},
abstract = {Predictive drug testing of patient-derived tumor organoids (PDTOs) holds promise for personalizing treatment of metastatic colorectal cancer (mCRC), but prospective data are limited to chemotherapy regimens with conflicting results. We describe a unified framework for PDTO-based predictive testing across standard-of-care chemotherapy and biologic and targeted therapy options. In an Australian community cohort, PDTO predictions based on treatment-naive patients (n = 56) and response rates from first-line mCRC clinical trials achieve 83% accuracy for forecasting responses in patients receiving palliative treatments (18 patients, 29 treatments). Similar assay accuracy is achieved in a prospective study of third-line or later mCRC treatment, AGITG FORECAST-1 (n = 30 patients). “Resistant” predictions are associated with inferior progression-free survival; misclassification rates are similar by regimen. Liver metastases are the optimal site for sampling, with testing achievable within 7 weeks for 68.8% cases. Our findings indicate that PDTO drug panel testing can provide predictive information for multifarious standard-of-care therapies for mCRC.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
Predictive drug testing of patient-derived tumor organoids (PDTOs) holds promise for personalizing treatment of metastatic colorectal cancer (mCRC), but prospective data are limited to chemotherapy regimens with conflicting results. We describe a unified framework for PDTO-based predictive testing across standard-of-care chemotherapy and biologic and targeted therapy options. In an Australian community cohort, PDTO predictions based on treatment-naive patients (n = 56) and response rates from first-line mCRC clinical trials achieve 83% accuracy for forecasting responses in patients receiving palliative treatments (18 patients, 29 treatments). Similar assay accuracy is achieved in a prospective study of third-line or later mCRC treatment, AGITG FORECAST-1 (n = 30 patients). “Resistant” predictions are associated with inferior progression-free survival; misclassification rates are similar by regimen. Liver metastases are the optimal site for sampling, with testing achievable within 7 weeks for 68.8% cases. Our findings indicate that PDTO drug panel testing can provide predictive information for multifarious standard-of-care therapies for mCRC. |
Cook, Michael A Lessons from assembling a microbial natural product and pre-fractionated extract library in an academic laboratory Journal Article In: 2023. @article{noKey,
title = {Lessons from assembling a microbial natural product and pre-fractionated extract library in an academic laboratory},
author = {Cook, Michael A},
url = {https://academic.oup.com/jimb/advance-article/doi/10.1093/jimb/kuad042/7459345},
doi = {https://doi.org/10.1093/jimb/kuad042},
year = {2023},
date = {2023-12-05},
abstract = {Microbial natural products are specialized metabolites that are sources of many bioactive
compounds including antibiotics, antifungals, antiparasitics, anticancer agents, and probes of
biology. The assembly of libraries of producers of natural products has traditionally been the
province of the pharmaceutical industry. This sector has gathered significant historical
collections of bacteria and fungi to identify new drug leads with outstanding outcomes - upwards of 60% of drug scaffolds originate from such libraries. Despite this success, the repeated rediscovery of known compounds and the resultant diminishing chemical novelty contributed to a pivot from this source of bioactive compounds toward more tractable synthetic compounds in the drug industry. The advent of advanced mass spectrometry tools, along with rapid whole genome sequencing and in silico identification of biosynthetic gene clusters that encode the machinery necessary for the synthesis of specialized metabolites, offers the opportunity to revisit microbial natural product libraries with renewed vigor. Assembling a suitable library of microbes and extracts for screening requires the investment of resources and the development of methods that have customarily been the proprietary purview of large pharmaceutical companies. Here, we
report a perspective on our efforts to assemble a library of natural product-producing microbes
and the establishment of methods to extract and fractionate bioactive compounds using resources available to most academic labs. We validate the library and approach through a series of screens for antimicrobial and cytotoxic agents. This work serves as a blueprint for establishing libraries of microbial natural product producers and bioactive extract fractions suitable for screens of bioactive compounds.},
keywords = {TEMPEST},
pubstate = {published},
tppubtype = {article}
}
Microbial natural products are specialized metabolites that are sources of many bioactive
compounds including antibiotics, antifungals, antiparasitics, anticancer agents, and probes of
biology. The assembly of libraries of producers of natural products has traditionally been the
province of the pharmaceutical industry. This sector has gathered significant historical
collections of bacteria and fungi to identify new drug leads with outstanding outcomes - upwards of 60% of drug scaffolds originate from such libraries. Despite this success, the repeated rediscovery of known compounds and the resultant diminishing chemical novelty contributed to a pivot from this source of bioactive compounds toward more tractable synthetic compounds in the drug industry. The advent of advanced mass spectrometry tools, along with rapid whole genome sequencing and in silico identification of biosynthetic gene clusters that encode the machinery necessary for the synthesis of specialized metabolites, offers the opportunity to revisit microbial natural product libraries with renewed vigor. Assembling a suitable library of microbes and extracts for screening requires the investment of resources and the development of methods that have customarily been the proprietary purview of large pharmaceutical companies. Here, we
report a perspective on our efforts to assemble a library of natural product-producing microbes
and the establishment of methods to extract and fractionate bioactive compounds using resources available to most academic labs. We validate the library and approach through a series of screens for antimicrobial and cytotoxic agents. This work serves as a blueprint for establishing libraries of microbial natural product producers and bioactive extract fractions suitable for screens of bioactive compounds. |
Zukas et, Kieran High-Throughput Screening to Develop a Biologically Relevant Netosis Induction Model Journal Article In: 2023. @article{noKey,
title = {High-Throughput Screening to Develop a Biologically Relevant Netosis Induction Model},
author = {Zukas et, Kieran},
url = {https://www.sciencedirect.com/science/article/abs/pii/S000649712310509X},
doi = {https://doi.org/10.1182/blood-2023-178975},
year = {2023},
date = {2023-11-29},
abstract = {Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection (1). It is responsible for ~370,000 US deaths annually (2). Neutrophils are an integral part of the innate immune response and rapidly clear pathogens from circulation using neutrophil extracellular traps (NETs), which are released through a process called NETosis (3). NETs prevent dissemination of pathogens by entrapment in externalized chromatin containing deactivating enzymes. While we have learned much about the mechanisms underlying NETosis, we are yet to translate it to improved therapies or patient outcomes. This gap may be attributable to the models used to study NETosis. Current models used to investigate NETosis are limited and routinely employ unnatural triggers such as phorbol 12-myristate 13-acetate (PMA). PMA is not a physiological trigger present in the immune system and may bypass the natural pathways that regulate NETs production. Mouse models that use isolated neutrophils and neutrophil-like cells induced from immortalized cell lines do not completely reflect the complex cellular and molecular biology underlying neutrophil activation and NETosis, especially in a whole-blood environment. Therefore, it is crucial to study how specific factors, known to be upregulated in disease, interact and potentially induce NETosis. Here we use high-throughput screening and natural NETosis triggers to develop a more biologically relevant ex vivo NETosis (Synthetic-Sepsis™) model.
Whole blood was collected from healthy donors and aliquoted into a 384 well plate using a Formulatrix Mantis liquid handler. This plate contained small molecules associated with neutrophils or NETosis activation, such as interleukins: Il-1b, IL-5, IL-6, IL-8, IL-15, IL-17, IL-18 and other molecules TNF- α, LT-α, IFN-γ, G-CSF, GM-CSF, E-selectin, PAF-16, CXCL1, CXCL2, LTB4, CXCL5, CCL2, CCL3, fMLP, Ferritin, HMGB1, C5a and LPS. We used a combinatorial pooling strategy designed using JMP software to identify which combinations of small molecules could stimulate NET formation. NETosis was assessed using Sytox green intercalation at 5 minute intervals for up to 24 hours using a Molecular Devices plate reader. PMA was utilized as a positive control for NETosis induction at varying concentrations.
Using our combinatorial pooling approach of the various factors, we successfully induced NETosis in an ex vivo whole blood system using naturally occurring cytokines and chemokines at physiologically relevant concentrations. We found that different combinations of factors evoke distinct neutrophil responses both in the time of NET generation and/or magnitude of NET-associated intercalation signal. We observed inter-donor variability in response time and amplitude however, similar small molecule pools induced consistent responses across donors. Furthermore, our findings suggest that at least four naturally occurring factors are necessary to induce NETosis in our system. Although some factors activate similar pathways, they are unable to induce a signal alone and as the number of factors increased beyond four, there was an enhanced NET response. Interestingly, we found either TNF-α or LT-α was required to cause a NETosis response, underlining the potentially significant roles these factors play in inflammatory disease. These results suggest an underlying master regulatory mechanism, such that certain factors are essential but not individually sufficient to trigger NETosis.
To our knowledge, we report the first ex-vivo model using naturally occurring cytokines and chemokines to induce NETosis in whole blood. These findings emphasize the importance of expanding our understanding of neutrophil physiology in a biologically relevant context with physiological triggers to induce NETosis. This approach could reveal new dimensions in our understanding of disease pathology and risk factors and might unearth potential therapeutic targets providing novel strategies for disease intervention and treatment. Further investigation of these factors is underway to further understand the release of NETs in natural and pathological states.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection (1). It is responsible for ~370,000 US deaths annually (2). Neutrophils are an integral part of the innate immune response and rapidly clear pathogens from circulation using neutrophil extracellular traps (NETs), which are released through a process called NETosis (3). NETs prevent dissemination of pathogens by entrapment in externalized chromatin containing deactivating enzymes. While we have learned much about the mechanisms underlying NETosis, we are yet to translate it to improved therapies or patient outcomes. This gap may be attributable to the models used to study NETosis. Current models used to investigate NETosis are limited and routinely employ unnatural triggers such as phorbol 12-myristate 13-acetate (PMA). PMA is not a physiological trigger present in the immune system and may bypass the natural pathways that regulate NETs production. Mouse models that use isolated neutrophils and neutrophil-like cells induced from immortalized cell lines do not completely reflect the complex cellular and molecular biology underlying neutrophil activation and NETosis, especially in a whole-blood environment. Therefore, it is crucial to study how specific factors, known to be upregulated in disease, interact and potentially induce NETosis. Here we use high-throughput screening and natural NETosis triggers to develop a more biologically relevant ex vivo NETosis (Synthetic-Sepsis™) model.
Whole blood was collected from healthy donors and aliquoted into a 384 well plate using a Formulatrix Mantis liquid handler. This plate contained small molecules associated with neutrophils or NETosis activation, such as interleukins: Il-1b, IL-5, IL-6, IL-8, IL-15, IL-17, IL-18 and other molecules TNF- α, LT-α, IFN-γ, G-CSF, GM-CSF, E-selectin, PAF-16, CXCL1, CXCL2, LTB4, CXCL5, CCL2, CCL3, fMLP, Ferritin, HMGB1, C5a and LPS. We used a combinatorial pooling strategy designed using JMP software to identify which combinations of small molecules could stimulate NET formation. NETosis was assessed using Sytox green intercalation at 5 minute intervals for up to 24 hours using a Molecular Devices plate reader. PMA was utilized as a positive control for NETosis induction at varying concentrations.
Using our combinatorial pooling approach of the various factors, we successfully induced NETosis in an ex vivo whole blood system using naturally occurring cytokines and chemokines at physiologically relevant concentrations. We found that different combinations of factors evoke distinct neutrophil responses both in the time of NET generation and/or magnitude of NET-associated intercalation signal. We observed inter-donor variability in response time and amplitude however, similar small molecule pools induced consistent responses across donors. Furthermore, our findings suggest that at least four naturally occurring factors are necessary to induce NETosis in our system. Although some factors activate similar pathways, they are unable to induce a signal alone and as the number of factors increased beyond four, there was an enhanced NET response. Interestingly, we found either TNF-α or LT-α was required to cause a NETosis response, underlining the potentially significant roles these factors play in inflammatory disease. These results suggest an underlying master regulatory mechanism, such that certain factors are essential but not individually sufficient to trigger NETosis.
To our knowledge, we report the first ex-vivo model using naturally occurring cytokines and chemokines to induce NETosis in whole blood. These findings emphasize the importance of expanding our understanding of neutrophil physiology in a biologically relevant context with physiological triggers to induce NETosis. This approach could reveal new dimensions in our understanding of disease pathology and risk factors and might unearth potential therapeutic targets providing novel strategies for disease intervention and treatment. Further investigation of these factors is underway to further understand the release of NETs in natural and pathological states. |