Spatial and single-cell transcriptomics reveal neuron-astrocyte interplay in long-term memory Sun, Wenfei In: 2023. @article{noKey,
title = {Spatial and single-cell transcriptomics reveal neuron-astrocyte interplay in long-term memory},
author = {Sun, Wenfei},
url = {https://www.biorxiv.org/content/10.1101/2023.03.20.533566v1.full},
doi = {https://doi.org/10.1101/2023.03.20.533566},
year = {2023},
date = {2023-01-01},
abstract = {Memory encodes past experiences, thereby enabling future plans. The basolateral amygdala (BLA) is a center of salience networks that underlie emotional experience and thus plays a key role in long-term fear memory formation1, 2. Here we used spatial and single-cell transcriptomics to illuminate the cellular and molecular architecture of the role of the basolateral amygdala in long-term memory. We identified transcriptional signatures in subpopulations of neurons and astrocytes that were memory-specific and persisted for weeks. These transcriptional signatures implicate neuropeptide signaling, mitogen-activated protein kinase (MAPK), brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), ubiquitination pathways, and synaptic connectivity in long-term memory. We also discovered that a neuronal sub-population, defined by increased Penk expression and decreased Tac expression, constitutes the most prominent component of the BLA’s memory engram. These transcriptional changes were observed both with single-cell RNAseq and with single-molecule spatial transcriptomics in intact slices, thereby providing a rich spatial map of a memory engram. The spatial data enabled us to show that this neuronal subpopulation further interacts with spatially related astrocytes that are essential for memory consolidation, indicating that neurons require interactions with astrocytes to encode long term memory.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
Memory encodes past experiences, thereby enabling future plans. The basolateral amygdala (BLA) is a center of salience networks that underlie emotional experience and thus plays a key role in long-term fear memory formation1, 2. Here we used spatial and single-cell transcriptomics to illuminate the cellular and molecular architecture of the role of the basolateral amygdala in long-term memory. We identified transcriptional signatures in subpopulations of neurons and astrocytes that were memory-specific and persisted for weeks. These transcriptional signatures implicate neuropeptide signaling, mitogen-activated protein kinase (MAPK), brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), ubiquitination pathways, and synaptic connectivity in long-term memory. We also discovered that a neuronal sub-population, defined by increased Penk expression and decreased Tac expression, constitutes the most prominent component of the BLA’s memory engram. These transcriptional changes were observed both with single-cell RNAseq and with single-molecule spatial transcriptomics in intact slices, thereby providing a rich spatial map of a memory engram. The spatial data enabled us to show that this neuronal subpopulation further interacts with spatially related astrocytes that are essential for memory consolidation, indicating that neurons require interactions with astrocytes to encode long term memory. |
Isolation and characterisation of novel Methanocorpusculum species indicates the genus is ancestrally host-associated Volmer, James G. In: 2023. @article{noKey,
title = {Isolation and characterisation of novel Methanocorpusculum species indicates the genus is ancestrally host-associated},
author = {Volmer, James G.},
url = {https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-023-01524-2},
doi = {https://doi.org/10.1186/s12915-023-01524-2},
year = {2023},
date = {2023-01-01},
abstract = {Background
With an increasing interest in the manipulation of methane produced from livestock cultivation, the microbiome of Australian marsupials provides a unique ecological and evolutionary comparison with ‘low-methane’ emitters. Previously, marsupial species were shown to be enriched for novel lineages of Methanocorpusculum, as well as Methanobrevibacter, Methanosphaera, and Methanomassiliicoccales. Despite sporadic reports of Methanocorpusculum from stool samples of various animal species, there remains little information on the impacts of these methanogens on their hosts.
Results
Here, we characterise novel host-associated species of Methanocorpusculum, to explore unique host-specific genetic factors and their associated metabolic potential. We performed comparative analyses on 176 Methanocorpusculum genomes comprising 130 metagenome-assembled genomes (MAGs) recovered from 20 public animal metagenome datasets and 35 other publicly available Methanocorpusculum MAGs and isolate genomes of host-associated and environmental origin. Nine MAGs were also produced from faecal metagenomes of the common wombat (Vombatus ursinus) and mahogany glider (Petaurus gracilis), along with the cultivation of one axenic isolate from each respective animal; M. vombati (sp. nov.) and M. petauri (sp. nov.).
Conclusions
Through our analyses, we substantially expand the available genetic information for this genus by describing the phenotypic and genetic characteristics of 23 host-associated species of Methanocorpusculum. These lineages display differential enrichment of genes associated with methanogenesis, amino acid biosynthesis, transport system proteins, phosphonate metabolism, and carbohydrate-active enzymes. These results provide insights into the differential genetic and functional adaptations of these novel host-associated species of Methanocorpusculum and suggest that this genus is ancestrally host-associated.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
Background
With an increasing interest in the manipulation of methane produced from livestock cultivation, the microbiome of Australian marsupials provides a unique ecological and evolutionary comparison with ‘low-methane’ emitters. Previously, marsupial species were shown to be enriched for novel lineages of Methanocorpusculum, as well as Methanobrevibacter, Methanosphaera, and Methanomassiliicoccales. Despite sporadic reports of Methanocorpusculum from stool samples of various animal species, there remains little information on the impacts of these methanogens on their hosts.
Results
Here, we characterise novel host-associated species of Methanocorpusculum, to explore unique host-specific genetic factors and their associated metabolic potential. We performed comparative analyses on 176 Methanocorpusculum genomes comprising 130 metagenome-assembled genomes (MAGs) recovered from 20 public animal metagenome datasets and 35 other publicly available Methanocorpusculum MAGs and isolate genomes of host-associated and environmental origin. Nine MAGs were also produced from faecal metagenomes of the common wombat (Vombatus ursinus) and mahogany glider (Petaurus gracilis), along with the cultivation of one axenic isolate from each respective animal; M. vombati (sp. nov.) and M. petauri (sp. nov.).
Conclusions
Through our analyses, we substantially expand the available genetic information for this genus by describing the phenotypic and genetic characteristics of 23 host-associated species of Methanocorpusculum. These lineages display differential enrichment of genes associated with methanogenesis, amino acid biosynthesis, transport system proteins, phosphonate metabolism, and carbohydrate-active enzymes. These results provide insights into the differential genetic and functional adaptations of these novel host-associated species of Methanocorpusculum and suggest that this genus is ancestrally host-associated. |
Assessment of melanoma therapy response L, Robert In: 2023. @article{noKey,
title = {Assessment of melanoma therapy response},
author = {L, Robert},
url = {https://patents.google.com/patent/US20230112964A1/en},
doi = {US20230112964A1},
year = {2023},
date = {2023-01-01},
abstract = {Described herein are methods for stratifying and evaluating melanoma treatment response in a subject using single-cell RNA sequencing (scRNA-seq) and a two-step deconvolution analysis and optionally administering a treatment depending on the results. Embodiment described herein are methods for stratifying and evaluating melanoma treatment response in a subject based on single cell or bulk RNA sequencing, bulk transcriptome profiling and/or transcript counting, and a two-step deconvolution analysis and optionally administering a treatment depending on the results.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
Described herein are methods for stratifying and evaluating melanoma treatment response in a subject using single-cell RNA sequencing (scRNA-seq) and a two-step deconvolution analysis and optionally administering a treatment depending on the results. Embodiment described herein are methods for stratifying and evaluating melanoma treatment response in a subject based on single cell or bulk RNA sequencing, bulk transcriptome profiling and/or transcript counting, and a two-step deconvolution analysis and optionally administering a treatment depending on the results. |
Radical fringe facilitates NOTCH1 and JAG1 cis interactions to sustain Hematopoietic stem cell fate Thambyrajah, Roshana In: 2023. @article{noKey,
title = {Radical fringe facilitates NOTCH1 and JAG1 cis interactions to sustain Hematopoietic stem cell fate},
author = {Thambyrajah, Roshana},
url = {https://www.biorxiv.org/content/10.1101/2023.04.19.537430v1.full},
doi = {https://doi.org/10.1101/2023.04.19.537430},
year = {2023},
date = {2023-01-01},
abstract = {Hematopoietic stem cells (HSCs) develop within a short time window from the hemogenic endothelium in the aorta- gonads-and mesonephros (AGM) region during embryonic development. The first HSCs reside within Intra-aortic hematopoietic clusters (IAHC) along with hematopoietic progenitors (HPC). The signalling mechanisms that divert HSCs from HPCs are unknown. Notch signaling is essential for arterial specification, IAHC formation and HSC activity, but current studies on how Notch drives these different fates are inconsistent. To determine the role of Notch in the specification of hemogenic endothelium, HSC and/or HPCs, we extensively analyzed Notch dynamics in the period of HSC generation. We defined the expression pattern of Notch signalling molecules at the gene and protein level and established a molecular mechanism that reconcile previous studies demonstrating the loss of HSC activity in NOTCH1, JAG1 and RBPJ null mutants, the enhanced HSC generation by blocking specific Notch activities or the abrogation of emerging HSCs by high Notch activation. We now demonstrate that Notch activity is highest in a subset of Gfi1+ hemogenic endothelial cells and is gradually lost with HSC maturation. We uncover that the HSC phenotype is maintained through loss of Notch activity due to increasing levels of NOTCH1 and JAG1 interactions on the surface of the same cell (cis) that renders the NOTCH1 receptor from being activated. Forcing activation of the NOTCH1 receptor in IAHC cells activates a hematopoietic differentiation program and supports a cis-inhibitory function for JAG1 and NOTCH1. Furthermore, we demonstrate that this cis-inhibitory interaction is enabled by RADICAL FRINGE (RFNG), a glycosyltransferase that enhances the affinity of NOTCH1 to JAG1 in cis. Finally, our results indicate that NOTCH1-JAG1 cis-inhibition is necessary for preserving the HSC phenotype in the hematopoietic clusters of the aorta.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
Hematopoietic stem cells (HSCs) develop within a short time window from the hemogenic endothelium in the aorta- gonads-and mesonephros (AGM) region during embryonic development. The first HSCs reside within Intra-aortic hematopoietic clusters (IAHC) along with hematopoietic progenitors (HPC). The signalling mechanisms that divert HSCs from HPCs are unknown. Notch signaling is essential for arterial specification, IAHC formation and HSC activity, but current studies on how Notch drives these different fates are inconsistent. To determine the role of Notch in the specification of hemogenic endothelium, HSC and/or HPCs, we extensively analyzed Notch dynamics in the period of HSC generation. We defined the expression pattern of Notch signalling molecules at the gene and protein level and established a molecular mechanism that reconcile previous studies demonstrating the loss of HSC activity in NOTCH1, JAG1 and RBPJ null mutants, the enhanced HSC generation by blocking specific Notch activities or the abrogation of emerging HSCs by high Notch activation. We now demonstrate that Notch activity is highest in a subset of Gfi1+ hemogenic endothelial cells and is gradually lost with HSC maturation. We uncover that the HSC phenotype is maintained through loss of Notch activity due to increasing levels of NOTCH1 and JAG1 interactions on the surface of the same cell (cis) that renders the NOTCH1 receptor from being activated. Forcing activation of the NOTCH1 receptor in IAHC cells activates a hematopoietic differentiation program and supports a cis-inhibitory function for JAG1 and NOTCH1. Furthermore, we demonstrate that this cis-inhibitory interaction is enabled by RADICAL FRINGE (RFNG), a glycosyltransferase that enhances the affinity of NOTCH1 to JAG1 in cis. Finally, our results indicate that NOTCH1-JAG1 cis-inhibition is necessary for preserving the HSC phenotype in the hematopoietic clusters of the aorta. |
Phylogenetic and metabolic diversity of microbial communities performing anaerobic ammonium and methane oxidations under different nitrogen loadings Li, Jie In: 2023. @article{noKey,
title = {Phylogenetic and metabolic diversity of microbial communities performing anaerobic ammonium and methane oxidations under different nitrogen loadings},
author = {Li, Jie},
url = {https://www.nature.com/articles/s43705-023-00246-4#Sec19},
doi = {https://doi.org/10.1038/s43705-023-00246-4},
year = {2023},
date = {2023-01-01},
abstract = {The microbial guild coupling anammox and nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) is an innovative process to achieve energy-efficient nitrogen removal with the beneficial use of methane in biogas or in anaerobically treated wastewater. Here, metagenomics and metatranscriptomics were used to reveal the microbial ecology of two biofilm systems, which incorporate anammox and n-DAMO for high-level nitrogen removal in low-strength domestic sewage and high-strength sidestream wastewater, respectively. We find that different nitrogen loadings (i.e., 0.1 vs. 1.0 kg N/m3/d) lead to different combinations of anammox bacteria and anaerobic methanotrophs (“Candidatus Methanoperedens” and “Candidatus Methylomirabilis”), which play primary roles for carbon and nitrogen transformations therein. Despite methane being the only exogenous organic carbon supplied, heterotrophic populations (e.g., Verrucomicrobiota and Bacteroidota) co-exist and actively perform partial denitrification or dissimilatory nitrate reduction to ammonium (DNRA), likely using organic intermediates from the breakdown of methane and biomass as carbon sources. More importantly, two novel genomes belonging to “Ca. Methylomirabilis” are recovered, while one surprisingly expresses nitrate reductases, which we designate as “Ca. Methylomirabilis nitratireducens” representing its inferred capability in performing nitrate-dependent anaerobic methane oxidation. This finding not only suggests a previously neglected possibility of “Ca. Methylomirabilis” bacteria in performing methane-dependent nitrate reduction, and also challenges the previous understanding that the methane-dependent complete denitrification from nitrate to dinitrogen gas is carried out by the consortium of bacteria and archaea.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
The microbial guild coupling anammox and nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) is an innovative process to achieve energy-efficient nitrogen removal with the beneficial use of methane in biogas or in anaerobically treated wastewater. Here, metagenomics and metatranscriptomics were used to reveal the microbial ecology of two biofilm systems, which incorporate anammox and n-DAMO for high-level nitrogen removal in low-strength domestic sewage and high-strength sidestream wastewater, respectively. We find that different nitrogen loadings (i.e., 0.1 vs. 1.0 kg N/m3/d) lead to different combinations of anammox bacteria and anaerobic methanotrophs (“Candidatus Methanoperedens” and “Candidatus Methylomirabilis”), which play primary roles for carbon and nitrogen transformations therein. Despite methane being the only exogenous organic carbon supplied, heterotrophic populations (e.g., Verrucomicrobiota and Bacteroidota) co-exist and actively perform partial denitrification or dissimilatory nitrate reduction to ammonium (DNRA), likely using organic intermediates from the breakdown of methane and biomass as carbon sources. More importantly, two novel genomes belonging to “Ca. Methylomirabilis” are recovered, while one surprisingly expresses nitrate reductases, which we designate as “Ca. Methylomirabilis nitratireducens” representing its inferred capability in performing nitrate-dependent anaerobic methane oxidation. This finding not only suggests a previously neglected possibility of “Ca. Methylomirabilis” bacteria in performing methane-dependent nitrate reduction, and also challenges the previous understanding that the methane-dependent complete denitrification from nitrate to dinitrogen gas is carried out by the consortium of bacteria and archaea. |
Single-cell transcriptomics of a dynamic cell behavior in murine airways Kwok, Sheldon JJ In: 2023. @article{noKey,
title = {Single-cell transcriptomics of a dynamic cell behavior in murine airways},
author = {Kwok, Sheldon JJ},
url = {https://elifesciences.org/articles/76645},
doi = {https://doi.org/10.7554/eLife.76645},
year = {2023},
date = {2023-01-01},
abstract = {Despite advances in high-dimensional cellular analysis, the molecular profiling of dynamic behaviors of cells in their native environment remains a major challenge. We present a method that allows us to couple the physiological behaviors of cells in an intact murine tissue to deep molecular profiling of individual cells. This method enabled us to establish a novel molecular signature for a striking migratory cellular behavior following injury in murine airways.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
Despite advances in high-dimensional cellular analysis, the molecular profiling of dynamic behaviors of cells in their native environment remains a major challenge. We present a method that allows us to couple the physiological behaviors of cells in an intact murine tissue to deep molecular profiling of individual cells. This method enabled us to establish a novel molecular signature for a striking migratory cellular behavior following injury in murine airways. |
Interlaboratory Comparison Using Inactivated Authentic Sars-Cov-2 Variants as a Feasible Tool for Quality Control in Covid-19 Wastewater Monitoring Wilhelm, Alexander In: 2023. @article{noKey,
title = {Interlaboratory Comparison Using Inactivated Authentic Sars-Cov-2 Variants as a Feasible Tool for Quality Control in Covid-19 Wastewater Monitoring},
author = {Wilhelm, Alexander},
url = {https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4442612},
doi = {http://dx.doi.org/10.2139/ssrn.4442612},
year = {2023},
date = {2023-01-01},
abstract = {Wastewater-based SARS-CoV-2 epidemiology (WBE) has proven as an excellent tool to monitor pandemic dynamics supporting individual testing strategies. WBE can also be used as an early warning system for monitoring the emergence of novel pathogens or viral variants. However, for a timely transmission of results, sophisticated sample logistics and analytics performed in decentralized laboratories close to the sampling sites are required. Since multiple decentralized laboratories commonly use custom in-house workflows for sample purification and PCR-analysis, comparative quality control of the analytical procedures is essential to report reliable and comparable results.In this study, we performed an interlaboratory comparison at laboratories specialized for PCR and high-throughput-sequencing (HTS)-based WBE analysis. Frozen reserve samples from low COVID-19 incidence periods were spiked with different inactivated authentic SARS-CoV-2 variants in graduated concentrations and ratios. Samples were sent to the participating laboratories for analysis using laboratory specific methods and the reported viral genome copy numbers and the detection of viral variants were compared with the expected values.Despite the different procedures, a high concordance regarding the SARS-CoV-2 PCR quantification could be achieved with low variation between the workflows. PCR-based genotyping was, in dependence of the underlying PCR-assay performance, able to predict the relative amount of variant specific substitutions even in samples with low spike-in amount. The identification of variants by HTS, however, required >100 copies/mL wastewater and had limited predictive value when analyzing at a genome coverage below 60%.This interlaboratory test demonstrates that despite different extraction and analysis methods, a high agreement of the SARS-CoV-2 genome copy equivalents could be achieved. Hence, decentralized SARS-CoV-2 wastewater monitoring is feasible to generate comparable analysis results. However, since not all assays detected the correct variant, prior evaluation of PCR and sequencing workflows as well as sustained quality control such as interlaboratory comparisons are mandatory for correct variant detection.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
Wastewater-based SARS-CoV-2 epidemiology (WBE) has proven as an excellent tool to monitor pandemic dynamics supporting individual testing strategies. WBE can also be used as an early warning system for monitoring the emergence of novel pathogens or viral variants. However, for a timely transmission of results, sophisticated sample logistics and analytics performed in decentralized laboratories close to the sampling sites are required. Since multiple decentralized laboratories commonly use custom in-house workflows for sample purification and PCR-analysis, comparative quality control of the analytical procedures is essential to report reliable and comparable results.In this study, we performed an interlaboratory comparison at laboratories specialized for PCR and high-throughput-sequencing (HTS)-based WBE analysis. Frozen reserve samples from low COVID-19 incidence periods were spiked with different inactivated authentic SARS-CoV-2 variants in graduated concentrations and ratios. Samples were sent to the participating laboratories for analysis using laboratory specific methods and the reported viral genome copy numbers and the detection of viral variants were compared with the expected values.Despite the different procedures, a high concordance regarding the SARS-CoV-2 PCR quantification could be achieved with low variation between the workflows. PCR-based genotyping was, in dependence of the underlying PCR-assay performance, able to predict the relative amount of variant specific substitutions even in samples with low spike-in amount. The identification of variants by HTS, however, required >100 copies/mL wastewater and had limited predictive value when analyzing at a genome coverage below 60%.This interlaboratory test demonstrates that despite different extraction and analysis methods, a high agreement of the SARS-CoV-2 genome copy equivalents could be achieved. Hence, decentralized SARS-CoV-2 wastewater monitoring is feasible to generate comparable analysis results. However, since not all assays detected the correct variant, prior evaluation of PCR and sequencing workflows as well as sustained quality control such as interlaboratory comparisons are mandatory for correct variant detection. |
Time-aligned hourglass gastrulation models in rabbit and mouse Mayshar, Yoav In: 2023. @article{noKey,
title = {Time-aligned hourglass gastrulation models in rabbit and mouse},
author = {Mayshar, Yoav},
url = {https://www.cell.com/cell/fulltext/S0092-8674(23)00471-3?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867423004713%3Fshowall%3Dtrue},
doi = {https://doi.org/10.1016/j.cell.2023.04.037},
year = {2023},
date = {2023-01-01},
abstract = {The hourglass model describes the convergence of species within the same phylum to a similar body plan during development; however, the molecular mechanisms underlying this phenomenon in mammals remain poorly described. Here, we compare rabbit and mouse time-resolved differentiation trajectories to revisit this model at single-cell resolution. We modeled gastrulation dynamics using hundreds of embryos sampled between gestation days 6.0 and 8.5 and compared the species using a framework for time-resolved single-cell differentiation-flows analysis. We find convergence toward similar cell-state compositions at E7.5, supported by the quantitatively conserved expression of 76 transcription factors, despite divergence in surrounding trophoblast and hypoblast signaling. However, we observed noticeable changes in specification timing of some lineages and divergence of primordial germ cell programs, which in the rabbit do not activate mesoderm genes. Comparative analysis of temporal differentiation models provides a basis for studying the evolution of gastrulation dynamics across mammals.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
The hourglass model describes the convergence of species within the same phylum to a similar body plan during development; however, the molecular mechanisms underlying this phenomenon in mammals remain poorly described. Here, we compare rabbit and mouse time-resolved differentiation trajectories to revisit this model at single-cell resolution. We modeled gastrulation dynamics using hundreds of embryos sampled between gestation days 6.0 and 8.5 and compared the species using a framework for time-resolved single-cell differentiation-flows analysis. We find convergence toward similar cell-state compositions at E7.5, supported by the quantitatively conserved expression of 76 transcription factors, despite divergence in surrounding trophoblast and hypoblast signaling. However, we observed noticeable changes in specification timing of some lineages and divergence of primordial germ cell programs, which in the rabbit do not activate mesoderm genes. Comparative analysis of temporal differentiation models provides a basis for studying the evolution of gastrulation dynamics across mammals. |
A framework for ultra-low input spatial tissue proteomics Makhmut, Anuar In: 2023. @article{noKey,
title = {A framework for ultra-low input spatial tissue proteomics},
author = {Makhmut, Anuar},
url = {https://www.biorxiv.org/content/10.1101/2023.05.13.540426v2.full},
doi = {https://doi.org/10.1101/2023.05.13.540426},
year = {2023},
date = {2023-01-01},
abstract = {Spatial tissue proteomics combining microscopy-based cell phenotyping with ultra-sensitive mass spectrometry (MS)-based proteomics is an emerging and powerful concept for the study of cell function and heterogeneity in health and disease. However, optimized workflows that preserve morphological information for image-based phenotype discovery and maximize proteome coverage of few or even single cells from laser microdissected archival tissue, are currently lacking. Here, we report a robust and scalable workflow for the proteomic analysis of ultra-low input formalin-fixed, paraffin-embedded (FFPE) material. Benchmarking in the murine liver resulted in up to 2,000 quantified proteins from single hepatocyte contours and nearly 5,000 proteins from 50-cell regions with high quantitative reproducibility. Applied to human tonsil, we profiled 146 microregions including spatially defined T and B lymphocyte niches and quantified cell type specific markers, cytokines, immune cell regulators and transcription factors. These rich data also highlighted proteome dynamics in spatially defined zones of activated germinal centers, illuminating sites undergoing active B-cell proliferation and somatic hypermutation. Our results demonstrate the power of spatially-resolved proteomics for tissue phenotyping by integrating high-content imaging, laser microdissection, and ultra-sensitive mass spectrometry. This approach has broad implications for a wide range of biomedical applications, including early disease profiling, drug target discovery and biomarker research.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
Spatial tissue proteomics combining microscopy-based cell phenotyping with ultra-sensitive mass spectrometry (MS)-based proteomics is an emerging and powerful concept for the study of cell function and heterogeneity in health and disease. However, optimized workflows that preserve morphological information for image-based phenotype discovery and maximize proteome coverage of few or even single cells from laser microdissected archival tissue, are currently lacking. Here, we report a robust and scalable workflow for the proteomic analysis of ultra-low input formalin-fixed, paraffin-embedded (FFPE) material. Benchmarking in the murine liver resulted in up to 2,000 quantified proteins from single hepatocyte contours and nearly 5,000 proteins from 50-cell regions with high quantitative reproducibility. Applied to human tonsil, we profiled 146 microregions including spatially defined T and B lymphocyte niches and quantified cell type specific markers, cytokines, immune cell regulators and transcription factors. These rich data also highlighted proteome dynamics in spatially defined zones of activated germinal centers, illuminating sites undergoing active B-cell proliferation and somatic hypermutation. Our results demonstrate the power of spatially-resolved proteomics for tissue phenotyping by integrating high-content imaging, laser microdissection, and ultra-sensitive mass spectrometry. This approach has broad implications for a wide range of biomedical applications, including early disease profiling, drug target discovery and biomarker research. |
scEC&T-seq: a method for parallel sequencing of extrachromosomal circular DNAs and transcriptomes in single human cells González, Rocío In: 2023. @article{noKey,
title = {scEC&T-seq: a method for parallel sequencing of extrachromosomal circular DNAs and transcriptomes in single human cells},
author = {González, Rocío},
url = {https://europepmc.org/article/ppr/ppr665786},
doi = {https://doi.org/10.21203/rs.3.pex-2180/v1},
year = {2023},
date = {2023-01-01},
abstract = {Extrachromosomal DNA amplifications are common in cancer and are associated with decreased patient survival. A key feature of extrachromosomal circular DNA is its ability to be randomly mis-segregated to daughter cells promoting rapid intercellular heterogeneity. Understanding how extrachromosomal circular DNA dynamics contribute to intercellular heterogeneity remains crucial to better understand its role in tumor evolution and adaptation to therapy. Here, we introduce scEC&T-seq ( s ingle c ell e xtrachromosomal c ircular DNA and t ranscriptomic seq uencing), a method for parallel detection of extrachromosomal circular DNAs and full-length mRNA in single cancer cells. In this protocol, a single cell’s DNA is separated from its polyadenylated RNA as described by Macaulay et al. (2015) 1 . This is followed by removal of linear DNA through exonuclease digestion and further enrichment of circular DNA by rolling circle amplification with φ29 polymerase 2-4 . The separated mRNA from the same cell is processed using on-bead Smart-seq2 1 . The duration of the entire procedure from cell sorting to library preparation is approximately 8 days. Our scEC&T-seq protocol has been validated in single cancer cells from neuroblastoma cell lines and primary tumors, and in normal single T-cells isolated from patient’s blood. Besides identifying large, oncogene-containing circular DNAs in cancer cells, our method also captures other smaller circular DNAs, which have been previously described in both cancer and non-malignant cells 5 . We envision that our method may enable the analysis of yet unknown prerequisites for the maintenance of both small and large circular DNA in cancers, but also in the context of other diseases and normal cellular development.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
Extrachromosomal DNA amplifications are common in cancer and are associated with decreased patient survival. A key feature of extrachromosomal circular DNA is its ability to be randomly mis-segregated to daughter cells promoting rapid intercellular heterogeneity. Understanding how extrachromosomal circular DNA dynamics contribute to intercellular heterogeneity remains crucial to better understand its role in tumor evolution and adaptation to therapy. Here, we introduce scEC&T-seq ( s ingle c ell e xtrachromosomal c ircular DNA and t ranscriptomic seq uencing), a method for parallel detection of extrachromosomal circular DNAs and full-length mRNA in single cancer cells. In this protocol, a single cell’s DNA is separated from its polyadenylated RNA as described by Macaulay et al. (2015) 1 . This is followed by removal of linear DNA through exonuclease digestion and further enrichment of circular DNA by rolling circle amplification with φ29 polymerase 2-4 . The separated mRNA from the same cell is processed using on-bead Smart-seq2 1 . The duration of the entire procedure from cell sorting to library preparation is approximately 8 days. Our scEC&T-seq protocol has been validated in single cancer cells from neuroblastoma cell lines and primary tumors, and in normal single T-cells isolated from patient’s blood. Besides identifying large, oncogene-containing circular DNAs in cancer cells, our method also captures other smaller circular DNAs, which have been previously described in both cancer and non-malignant cells 5 . We envision that our method may enable the analysis of yet unknown prerequisites for the maintenance of both small and large circular DNA in cancers, but also in the context of other diseases and normal cellular development. |
Strain dropouts reveal interactions that govern the metabolic output of the gut microbiome Wang, Min In: 2023. @article{noKey,
title = {Strain dropouts reveal interactions that govern the metabolic output of the gut microbiome},
author = {Wang, Min},
url = {https://www.cell.com/cell/pdf/S0092-8674(23)00589-5.pdf},
doi = {https://doi.org/10.1016/j.cell.2023.05.037},
year = {2023},
date = {2023-01-01},
abstract = {The gut microbiome is complex, raising questions about the role of individual strains in the community. Here, we address this question by constructing variants of a complex defined community in which we eliminate strains that occupy the bile acid 7α-dehydroxylation niche. Omitting Clostridium scindens (Cs) and Clostridium hylemonae (Ch) eliminates secondary bile acid production and reshapes the community in a highly specific manner: eight strains change in relative abundance by >100-fold. In single-strain dropout communities, Cs and Ch reach the same relative abundance and dehydroxylate bile acids to a similar extent. However, Clostridium sporogenes increases >1,000-fold in the ΔCs but not ΔCh dropout, reshaping the pool of microbiome-derived phenylalanine metabolites. Thus, strains that are functionally redundant within a niche can have widely varying impacts outside the niche, and a strain swap can ripple through the community in an unpredictable manner, resulting in a large impact on an unrelated community-level phenotype.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
The gut microbiome is complex, raising questions about the role of individual strains in the community. Here, we address this question by constructing variants of a complex defined community in which we eliminate strains that occupy the bile acid 7α-dehydroxylation niche. Omitting Clostridium scindens (Cs) and Clostridium hylemonae (Ch) eliminates secondary bile acid production and reshapes the community in a highly specific manner: eight strains change in relative abundance by >100-fold. In single-strain dropout communities, Cs and Ch reach the same relative abundance and dehydroxylate bile acids to a similar extent. However, Clostridium sporogenes increases >1,000-fold in the ΔCs but not ΔCh dropout, reshaping the pool of microbiome-derived phenylalanine metabolites. Thus, strains that are functionally redundant within a niche can have widely varying impacts outside the niche, and a strain swap can ripple through the community in an unpredictable manner, resulting in a large impact on an unrelated community-level phenotype. |
Glycidamide-induced hypermutation in yeast single-stranded DNA reveals a ubiquitous clock-like mutational motif in humans Hudson, Kathleen M In: 2023. @article{noKey,
title = {Glycidamide-induced hypermutation in yeast single-stranded DNA reveals a ubiquitous clock-like mutational motif in humans},
author = {Hudson, Kathleen M},
url = {https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkad611/7226869?login=false},
doi = {https://doi.org/10.1093/nar/gkad611},
year = {2023},
date = {2023-01-01},
abstract = {Mutagens often prefer specific nucleotides or oligonucleotide motifs that can be revealed by studying the hypermutation spectra in single-stranded (ss) DNA. We utilized a yeast model to explore mutagenesis by glycidamide, a simple epoxide formed endogenously in humans from the environmental toxicant acrylamide. Glycidamide caused ssDNA hypermutation in yeast predominantly in cytosines and adenines. The most frequent mutations in adenines occurred in the nAt→nGt trinucleotide motif. Base substitutions A→G in this motif relied on Rev1 translesion polymerase activity. Inactivating Rev1 did not alter the nAt trinucleotide preference, suggesting it may be an intrinsic specificity of the chemical reaction between glycidamide and adenine in the ssDNA. We found this mutational motif enriched in published sequencing data from glycidamide-treated mouse cells and ubiquitous in human cancers. In cancers, this motif was positively correlated with the single base substitution (SBS) smoking-associated SBS4 signature, with the clock-like signatures SBS1, SBS5, and was strongly correlated with smoking history and with age of tumor donors. Clock-like feature of the motif was also revealed in cells of human skin and brain. Given its pervasiveness, we propose that this mutational motif reflects mutagenic lesions to adenines in ssDNA from a potentially broad range of endogenous and exogenous agents.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
Mutagens often prefer specific nucleotides or oligonucleotide motifs that can be revealed by studying the hypermutation spectra in single-stranded (ss) DNA. We utilized a yeast model to explore mutagenesis by glycidamide, a simple epoxide formed endogenously in humans from the environmental toxicant acrylamide. Glycidamide caused ssDNA hypermutation in yeast predominantly in cytosines and adenines. The most frequent mutations in adenines occurred in the nAt→nGt trinucleotide motif. Base substitutions A→G in this motif relied on Rev1 translesion polymerase activity. Inactivating Rev1 did not alter the nAt trinucleotide preference, suggesting it may be an intrinsic specificity of the chemical reaction between glycidamide and adenine in the ssDNA. We found this mutational motif enriched in published sequencing data from glycidamide-treated mouse cells and ubiquitous in human cancers. In cancers, this motif was positively correlated with the single base substitution (SBS) smoking-associated SBS4 signature, with the clock-like signatures SBS1, SBS5, and was strongly correlated with smoking history and with age of tumor donors. Clock-like feature of the motif was also revealed in cells of human skin and brain. Given its pervasiveness, we propose that this mutational motif reflects mutagenic lesions to adenines in ssDNA from a potentially broad range of endogenous and exogenous agents. |
Exploring positions 6 and 7 of a quinazoline-based scaffold leads to changes in selectivity and potency towards RIPK2/3 kinases Misehe, Mbilo In: 2023. @article{noKey,
title = {Exploring positions 6 and 7 of a quinazoline-based scaffold leads to changes in selectivity and potency towards RIPK2/3 kinases},
author = {Misehe, Mbilo},
url = {https://www.sciencedirect.com/science/article/pii/S0223523423006840},
doi = {https://doi.org/10.1016/j.ejmech.2023.115717},
year = {2023},
date = {2023-01-01},
abstract = {Receptor-interacting protein kinases 2 and 3 (RIPK2 and RIPK3) are considered attractive therapeutic enzyme targets for the treatment of a multitude of inflammatory diseases and cancers. In this study, we developed three interrelated series of novel quinazoline-based derivatives to investigate the effects of extensive modifications of positions 6 and 7 of the central core on the inhibitory activity and the selectivity against these RIPKs. The design of the derivatives was inspired by analyses of available literary knowledge on both RIPK2 and RIPK3 in complex with known quinazoline or quinoline inhibitors. Enzymatic investigations for bioactivity of the prepared molecules against purified RIPKs (RIPK1-4) shed light on multiple potent and selective RIPK2 and dual RIPK2/3 inhibitors. Furthermore, evaluations in living cells against the RIPK2-NOD1/2-mediated signaling pathways, identified as the potential primary targets, demonstrated nanomolar inhibition for a majority of the compounds. In addition, we have demonstrated overall good stability of various lead inhibitors in both human and mouse microsomes and plasma. Several of these compounds also were evaluated for selectivity across 58 human kinases other than RIPKs, exhibiting outstanding specificity profiles. We have thus clearly demonstrated that tuning appropriate substitutions at positions 6 and 7 of the developed quinazoline derivatives may lead to interesting potency and specificities against RIPK2 and RIPK3. This knowledge might therefore be employed for the targeted preparation of new, highly potent and selective tools against these RIPKs, which could be of utility in biological and clinical research.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
Receptor-interacting protein kinases 2 and 3 (RIPK2 and RIPK3) are considered attractive therapeutic enzyme targets for the treatment of a multitude of inflammatory diseases and cancers. In this study, we developed three interrelated series of novel quinazoline-based derivatives to investigate the effects of extensive modifications of positions 6 and 7 of the central core on the inhibitory activity and the selectivity against these RIPKs. The design of the derivatives was inspired by analyses of available literary knowledge on both RIPK2 and RIPK3 in complex with known quinazoline or quinoline inhibitors. Enzymatic investigations for bioactivity of the prepared molecules against purified RIPKs (RIPK1-4) shed light on multiple potent and selective RIPK2 and dual RIPK2/3 inhibitors. Furthermore, evaluations in living cells against the RIPK2-NOD1/2-mediated signaling pathways, identified as the potential primary targets, demonstrated nanomolar inhibition for a majority of the compounds. In addition, we have demonstrated overall good stability of various lead inhibitors in both human and mouse microsomes and plasma. Several of these compounds also were evaluated for selectivity across 58 human kinases other than RIPKs, exhibiting outstanding specificity profiles. We have thus clearly demonstrated that tuning appropriate substitutions at positions 6 and 7 of the developed quinazoline derivatives may lead to interesting potency and specificities against RIPK2 and RIPK3. This knowledge might therefore be employed for the targeted preparation of new, highly potent and selective tools against these RIPKs, which could be of utility in biological and clinical research. |
Skim exome capture genotyping in wheat Wang, Hongliang, In: 2023. @article{noKey,
title = {Skim exome capture genotyping in wheat},
author = {Wang, Hongliang,},
url = {https://acsess.onlinelibrary.wiley.com/doi/10.1002/tpg2.20381},
doi = {https://doi.org/10.1002/tpg2.20381},
year = {2023},
date = {2023-01-01},
abstract = {Next-generation sequencing (NGS) technology advancements continue to reduce the cost of high-throughput genome-wide genotyping for breeding and genetics research. Skim sequencing, which surveys the entire genome at low coverage, has become feasible for quantitative trait locus (QTL) mapping and genomic selection in various crops. However, the genome complexity of allopolyploid crops such as wheat (Triticum aestivum L.) still poses a significant challenge for genome-wide genotyping. Targeted sequencing of the protein-coding regions (i.e., exome) reduces sequencing costs compared to whole genome re-sequencing and can be used for marker discovery and genotyping. We developed a method called skim exome capture (SEC) that combines the strengths of these existing technologies and produces targeted genotyping data while decreasing the cost on a per-sample basis compared to traditional exome capture. Specifically, we fragmented genomic DNA using a tagmentation approach, then enriched those fragments for the low-copy genic portion of the genome using commercial wheat exome baits and multiplexed the sequencing at different levels to achieve desired coverage. We demonstrated that for a library of 48 samples, ∼7–8× target coverage was sufficient for high-quality variant detection. For higher multiplexing levels of 528 and 1056 samples per library, we achieved an average coverage of 0.76× and 0.32×, respectively. Combining these lower coverage SEC sequencing data with genotype imputation using a customized wheat practical haplotype graph database that we developed, we identified hundreds of thousands of high-quality genic variants across the genome. The SEC method can be used for high-resolution QTL mapping, genome-wide association studies, genomic selection, and other downstream applications.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
Next-generation sequencing (NGS) technology advancements continue to reduce the cost of high-throughput genome-wide genotyping for breeding and genetics research. Skim sequencing, which surveys the entire genome at low coverage, has become feasible for quantitative trait locus (QTL) mapping and genomic selection in various crops. However, the genome complexity of allopolyploid crops such as wheat (Triticum aestivum L.) still poses a significant challenge for genome-wide genotyping. Targeted sequencing of the protein-coding regions (i.e., exome) reduces sequencing costs compared to whole genome re-sequencing and can be used for marker discovery and genotyping. We developed a method called skim exome capture (SEC) that combines the strengths of these existing technologies and produces targeted genotyping data while decreasing the cost on a per-sample basis compared to traditional exome capture. Specifically, we fragmented genomic DNA using a tagmentation approach, then enriched those fragments for the low-copy genic portion of the genome using commercial wheat exome baits and multiplexed the sequencing at different levels to achieve desired coverage. We demonstrated that for a library of 48 samples, ∼7–8× target coverage was sufficient for high-quality variant detection. For higher multiplexing levels of 528 and 1056 samples per library, we achieved an average coverage of 0.76× and 0.32×, respectively. Combining these lower coverage SEC sequencing data with genotype imputation using a customized wheat practical haplotype graph database that we developed, we identified hundreds of thousands of high-quality genic variants across the genome. The SEC method can be used for high-resolution QTL mapping, genome-wide association studies, genomic selection, and other downstream applications. |
Discovery of 2-amide-3-methylester thiophenes inhibiting SARS-CoV-2 ADP-ribosyl hydrolysing macrodomain and coronavirus replication Wazir, Sarah In: 2023. @article{noKey,
title = {Discovery of 2-amide-3-methylester thiophenes inhibiting SARS-CoV-2 ADP-ribosyl hydrolysing macrodomain and coronavirus replication},
author = {Wazir, Sarah},
url = {https://www.biorxiv.org/content/10.1101/2023.08.28.555062v1.full},
doi = {https://doi.org/10.1101/2023.08.28.555062},
year = {2023},
date = {2023-01-01},
abstract = {The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has made it clear that further development of antiviral therapies will be needed to combat additional SARS-CoV-2 variants or novel CoVs. Here, we describe small molecule inhibitors for SARS-CoV-2 Mac1, which counters ADP-ribosylation mediated innate immune responses. The compounds inhibiting Mac1 were discovered through high-throughput screening (HTS) using a protein FRET-based competition assay and the best hit compound had an IC50 of 14 µM. Three validated HTS hits have the same 2-amide-3-methylester thiophene scaffold and the scaffold was selected for structure-activity relationship (SAR) studies through commercial and synthesized analogs. We studied the compound binding mode in detail using X-ray crystallography and this allowed us to focus on specific features of the compound and design analogs. Compound 27 (MDOLL-0229) had an IC50 of 2.1 µM and was generally selective for CoV Mac1 proteins after profiling for activity against a panel of viral and human ADP-ribose binding proteins. The improved potency allowed testing of its effect on virus replication and indeed, 27 inhibited replication of a mouse hepatitis virus, a prototype CoV. Compound 27 is the first Mac1 targeted small molecule demonstrated to inhibit coronavirus replication in a cell model. This, together with its well-defined binding mode, makes 27 a good candidate for further hit/lead-optimization efforts.},
keywords = {MANTIS},
pubstate = {published},
tppubtype = {article}
}
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has made it clear that further development of antiviral therapies will be needed to combat additional SARS-CoV-2 variants or novel CoVs. Here, we describe small molecule inhibitors for SARS-CoV-2 Mac1, which counters ADP-ribosylation mediated innate immune responses. The compounds inhibiting Mac1 were discovered through high-throughput screening (HTS) using a protein FRET-based competition assay and the best hit compound had an IC50 of 14 µM. Three validated HTS hits have the same 2-amide-3-methylester thiophene scaffold and the scaffold was selected for structure-activity relationship (SAR) studies through commercial and synthesized analogs. We studied the compound binding mode in detail using X-ray crystallography and this allowed us to focus on specific features of the compound and design analogs. Compound 27 (MDOLL-0229) had an IC50 of 2.1 µM and was generally selective for CoV Mac1 proteins after profiling for activity against a panel of viral and human ADP-ribose binding proteins. The improved potency allowed testing of its effect on virus replication and indeed, 27 inhibited replication of a mouse hepatitis virus, a prototype CoV. Compound 27 is the first Mac1 targeted small molecule demonstrated to inhibit coronavirus replication in a cell model. This, together with its well-defined binding mode, makes 27 a good candidate for further hit/lead-optimization efforts. |
Periodic Photobleaching with Structured Illumination for Diffusion Imaging Cao, Ziyi, Harmon, Dustin M. In: 2023. @article{noKey,
title = {Periodic Photobleaching with Structured Illumination for Diffusion Imaging},
author = {Cao, Ziyi, Harmon, Dustin M.},
url = {https://pubs.acs.org/doi/full/10.1021/acs.analchem.2c02950?casa_token=nK9Ckj6YhgMAAAAA%3AC5pKduwdgP8RqdRI3Kr7PYMi4Qtu97katiZoy3fKCp_SlYPDQF6nq24-aUhPEyOIdxx6kqZg-VU4dzqd},
doi = {https://doi.org/10.1021/acs.analchem.2c02950},
year = {2023},
date = {2023-01-01},
abstract = {The use of periodically structured illumination coupled with spatial Fourier-transform fluorescence recovery after photobleaching (FT-FRAP) was shown to support diffusivity mapping within segmented domains of arbitrary shape. Periodic “comb-bleach” patterning of the excitation beam during photobleaching encoded spatial maps of diffusion onto harmonic peaks in the spatial Fourier transform. Diffusion manifests as a simple exponential decay of a given harmonic, improving the signal to noise ratio and simplifying mathematical analysis. Image segmentation prior to Fourier transformation was shown to support pooling for signal to noise enhancement for regions of arbitrary shape expected to exhibit similar diffusivity within a domain. Following proof-of-concept analyses based on simulations with known ground-truth maps, diffusion imaging by FT-FRAP was used to map spatially-resolved diffusion differences within phase-separated domains of model amorphous solid dispersion spin-cast thin films. Notably, multi-harmonic analysis by FT-FRAP was able to definitively discriminate and quantify the roles of internal diffusion and exchange to higher mobility interfacial layers in modeling the recovery kinetics within thin amorphous/amorphous phase-separated domains, with interfacial diffusion playing a critical role in recovery. These results have direct implications for the design of amorphous systems for stable storage and efficacious delivery of therapeutic molecules.},
keywords = {FRAP},
pubstate = {published},
tppubtype = {article}
}
The use of periodically structured illumination coupled with spatial Fourier-transform fluorescence recovery after photobleaching (FT-FRAP) was shown to support diffusivity mapping within segmented domains of arbitrary shape. Periodic “comb-bleach” patterning of the excitation beam during photobleaching encoded spatial maps of diffusion onto harmonic peaks in the spatial Fourier transform. Diffusion manifests as a simple exponential decay of a given harmonic, improving the signal to noise ratio and simplifying mathematical analysis. Image segmentation prior to Fourier transformation was shown to support pooling for signal to noise enhancement for regions of arbitrary shape expected to exhibit similar diffusivity within a domain. Following proof-of-concept analyses based on simulations with known ground-truth maps, diffusion imaging by FT-FRAP was used to map spatially-resolved diffusion differences within phase-separated domains of model amorphous solid dispersion spin-cast thin films. Notably, multi-harmonic analysis by FT-FRAP was able to definitively discriminate and quantify the roles of internal diffusion and exchange to higher mobility interfacial layers in modeling the recovery kinetics within thin amorphous/amorphous phase-separated domains, with interfacial diffusion playing a critical role in recovery. These results have direct implications for the design of amorphous systems for stable storage and efficacious delivery of therapeutic molecules. |
Assembling membraneless organelles from de novo designed proteins Hilditch, Alexander T., Romanyuk, Andrey In: 2023. @article{noKey,
title = {Assembling membraneless organelles from de novo designed proteins},
author = {Hilditch, Alexander T., Romanyuk, Andrey},
url = {https://www.biorxiv.org/content/10.1101/2023.04.18.537322v1.abstract},
doi = {https://doi.org/10.1101/2023.04.18.537322},
year = {2023},
date = {2023-01-01},
abstract = {Recent advances in de novo protein design have delivered a diversity of discrete de novo protein structures and complexes. A new challenge for the field is to use these designs directly in cells to intervene in biological process and augment natural systems. The bottom-up design of self-assembled objects like microcompartments and membraneless organelles is one such challenge, which also presents opportunities for chemical and synthetic biology. Here, we describe the design of genetically encoded polypeptides that form membraneless organelles in Escherichia coli (E. coli). To do this, we combine de novo α-helical sequences, intrinsically disordered linkers, and client proteins in single-polypeptide constructs. We tailor the properties of the helical regions to shift protein assembly from diffusion-limited assemblies to dynamic condensates. The designs are characterised in cells and in vitro using biophysical and soft-matter physics methods. Finally, we use the designed polypeptide to co-compartmentalise a functional enzyme pair in E. coli.},
keywords = {FRAP},
pubstate = {published},
tppubtype = {article}
}
Recent advances in de novo protein design have delivered a diversity of discrete de novo protein structures and complexes. A new challenge for the field is to use these designs directly in cells to intervene in biological process and augment natural systems. The bottom-up design of self-assembled objects like microcompartments and membraneless organelles is one such challenge, which also presents opportunities for chemical and synthetic biology. Here, we describe the design of genetically encoded polypeptides that form membraneless organelles in Escherichia coli (E. coli). To do this, we combine de novo α-helical sequences, intrinsically disordered linkers, and client proteins in single-polypeptide constructs. We tailor the properties of the helical regions to shift protein assembly from diffusion-limited assemblies to dynamic condensates. The designs are characterised in cells and in vitro using biophysical and soft-matter physics methods. Finally, we use the designed polypeptide to co-compartmentalise a functional enzyme pair in E. coli. |
Crystalline Antibody-Laden Alginate Particles: A Platform for Enabling High Concentration Subcutaneous Delivery of Antibodies Erfani, Amir, Schieferstein, Jeremy M. In: 2023. @article{noKey,
title = {Crystalline Antibody-Laden Alginate Particles: A Platform for Enabling High Concentration Subcutaneous Delivery of Antibodies},
author = {Erfani, Amir, Schieferstein, Jeremy M.},
url = {https://onlinelibrary.wiley.com/doi/full/10.1002/adhm.202202370},
doi = {https://doi.org/10.1002/adhm.202202370},
year = {2023},
date = {2023-01-01},
abstract = {Subcutaneous (SC) administration is a desired route for monoclonal antibodies (mAbs). However, formulating mAbs for small injection volumes at high concentrations with suitable stability and injectability is a significant challenge. Here, this work presents a platform technology that combines the stability of crystalline antibodies with injectability and tunability of soft hydrogel particles. Composite alginate hydrogel particles are generated via a gentle centrifugal encapsulation process which avoids use of chemical reactions or an external organic phase. Crystalline suspension of anti-programmed cell death protein 1 (PD-1) antibody (pembrolizumab) is utilized as a model therapeutic antibody. Crystalline forms of the mAb encapsuled in the hydrogel particles lead to stable, high concentration, and injectable formulations. Formulation concentrations as high as 315 mg mL−1 antibody are achieved with encapsulation efficiencies in the range of 89–97%, with no perceivable increase in the number of antibody aggregates. Bioanalytical studies confirm superior maintained quality of the antibody in comparison with formulation approaches involving organic phases and chemical reactions. This work illustrates tuning the alginate particles’ disintegration by using partially oxide alginates. Crystalline mAb-laden particles are evaluated for their biocompatibility using cell-based in vitro assays. Furthermore, the pharmacokinetics (PK) of the subcutaneously delivered human anti-PD-1 mAb in crystalline antibody-laden alginate hydrogel particles in Wistar rats is evaluated.},
keywords = {SONICC},
pubstate = {published},
tppubtype = {article}
}
Subcutaneous (SC) administration is a desired route for monoclonal antibodies (mAbs). However, formulating mAbs for small injection volumes at high concentrations with suitable stability and injectability is a significant challenge. Here, this work presents a platform technology that combines the stability of crystalline antibodies with injectability and tunability of soft hydrogel particles. Composite alginate hydrogel particles are generated via a gentle centrifugal encapsulation process which avoids use of chemical reactions or an external organic phase. Crystalline suspension of anti-programmed cell death protein 1 (PD-1) antibody (pembrolizumab) is utilized as a model therapeutic antibody. Crystalline forms of the mAb encapsuled in the hydrogel particles lead to stable, high concentration, and injectable formulations. Formulation concentrations as high as 315 mg mL−1 antibody are achieved with encapsulation efficiencies in the range of 89–97%, with no perceivable increase in the number of antibody aggregates. Bioanalytical studies confirm superior maintained quality of the antibody in comparison with formulation approaches involving organic phases and chemical reactions. This work illustrates tuning the alginate particles’ disintegration by using partially oxide alginates. Crystalline mAb-laden particles are evaluated for their biocompatibility using cell-based in vitro assays. Furthermore, the pharmacokinetics (PK) of the subcutaneously delivered human anti-PD-1 mAb in crystalline antibody-laden alginate hydrogel particles in Wistar rats is evaluated. |
Ultrafast structural changes direct the first molecular events of vision Gruhl, Thomas, Weinert, Tobias In: 2023. @article{noKey,
title = {Ultrafast structural changes direct the first molecular events of vision},
author = {Gruhl, Thomas, Weinert, Tobias},
url = {https://www.nature.com/articles/s41586-023-05863-6},
doi = {https://doi.org/10.1038/s41586-023-05863-6},
year = {2023},
date = {2023-01-01},
abstract = {Vision is initiated by the rhodopsin family of light-sensitive G protein-coupled receptors (GPCRs)1. A photon is absorbed by the 11-cis retinal chromophore of rhodopsin, which isomerizes within 200 femtoseconds to the all-trans conformation2, thereby initiating the cellular signal transduction processes that ultimately lead to vision. However, the intramolecular mechanism by which the photoactivated retinal induces the activation events inside rhodopsin remains experimentally unclear. Here we use ultrafast time-resolved crystallography at room temperature3 to determine how an isomerized twisted all-trans retinal stores the photon energy that is required to initiate the protein conformational changes associated with the formation of the G protein-binding signalling state. The distorted retinal at a 1-ps time delay after photoactivation has pulled away from half of its numerous interactions with its binding pocket, and the excess of the photon energy is released through an anisotropic protein breathing motion in the direction of the extracellular space. Notably, the very early structural motions in the protein side chains of rhodopsin appear in regions that are involved in later stages of the conserved class A GPCR activation mechanism. Our study sheds light on the earliest stages of vision in vertebrates and points to fundamental aspects of the molecular mechanisms of agonist-mediated GPCR activation.},
keywords = {SONICC},
pubstate = {published},
tppubtype = {article}
}
Vision is initiated by the rhodopsin family of light-sensitive G protein-coupled receptors (GPCRs)1. A photon is absorbed by the 11-cis retinal chromophore of rhodopsin, which isomerizes within 200 femtoseconds to the all-trans conformation2, thereby initiating the cellular signal transduction processes that ultimately lead to vision. However, the intramolecular mechanism by which the photoactivated retinal induces the activation events inside rhodopsin remains experimentally unclear. Here we use ultrafast time-resolved crystallography at room temperature3 to determine how an isomerized twisted all-trans retinal stores the photon energy that is required to initiate the protein conformational changes associated with the formation of the G protein-binding signalling state. The distorted retinal at a 1-ps time delay after photoactivation has pulled away from half of its numerous interactions with its binding pocket, and the excess of the photon energy is released through an anisotropic protein breathing motion in the direction of the extracellular space. Notably, the very early structural motions in the protein side chains of rhodopsin appear in regions that are involved in later stages of the conserved class A GPCR activation mechanism. Our study sheds light on the earliest stages of vision in vertebrates and points to fundamental aspects of the molecular mechanisms of agonist-mediated GPCR activation. |
Conformational coupling of the sialic acid TRAP transporter HiSiaQM with its substrate binding protein HiSiaP Peter, Martin F., Ruland, Jan A. In: 2023. @article{noKey,
title = {Conformational coupling of the sialic acid TRAP transporter HiSiaQM with its substrate binding protein HiSiaP},
author = {Peter, Martin F., Ruland, Jan A.},
url = {https://www.biorxiv.org/content/10.1101/2023.03.04.531103v1.abstract},
doi = {https://doi.org/10.1101/2023.03.04.531103},
year = {2023},
date = {2023-01-01},
abstract = {The tripartite ATP-independent periplasmic (TRAP) transporters use an extra cytoplasmic substrate binding protein (SBP) to transport a wide variety of substrates in bacteria and archaea. The SBP can adopt an ‘open’ or ‘closed’ state depending on the presence of substrate. The two transmembrane domains of TRAP transporters form a monomeric elevator whose function is strictly dependent on the presence of a sodium ion gradient. Insights from experimental structures, structural predictions and molecular modeling have suggested a conformational coupling between the membrane elevator and the substrate binding protein. Here, we use a disulfide engineering approach to lock the TRAP transporter HiSiaPQM from Haemophilus influenzae in different conformational states. The SBP, HiSiaP, was locked in its substrate-bound form and the transmembrane elevator, HiSiaQM, was locked in either its predicted inward- or outward-facing states. We characterized the disulfide-locked variants and used single-molecule total internal reflection fluorescence (TIRF) microscopy to study their interactions. Our experiments demonstrate that the SBP and the transmembrane elevator are indeed ‘conformationally coupled’, meaning that the open and closed state of the SBP recognize specific conformational states of the transporter and vice versa.},
keywords = {ROCKIMAGER},
pubstate = {published},
tppubtype = {article}
}
The tripartite ATP-independent periplasmic (TRAP) transporters use an extra cytoplasmic substrate binding protein (SBP) to transport a wide variety of substrates in bacteria and archaea. The SBP can adopt an ‘open’ or ‘closed’ state depending on the presence of substrate. The two transmembrane domains of TRAP transporters form a monomeric elevator whose function is strictly dependent on the presence of a sodium ion gradient. Insights from experimental structures, structural predictions and molecular modeling have suggested a conformational coupling between the membrane elevator and the substrate binding protein. Here, we use a disulfide engineering approach to lock the TRAP transporter HiSiaPQM from Haemophilus influenzae in different conformational states. The SBP, HiSiaP, was locked in its substrate-bound form and the transmembrane elevator, HiSiaQM, was locked in either its predicted inward- or outward-facing states. We characterized the disulfide-locked variants and used single-molecule total internal reflection fluorescence (TIRF) microscopy to study their interactions. Our experiments demonstrate that the SBP and the transmembrane elevator are indeed ‘conformationally coupled’, meaning that the open and closed state of the SBP recognize specific conformational states of the transporter and vice versa. |